llvm-6502/utils/TableGen/InstrSelectorEmitter.cpp

366 lines
12 KiB
C++
Raw Normal View History

//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//
#include "InstrSelectorEmitter.h"
#include "CodeGenWrappers.h"
#include "Record.h"
#include "Support/Debug.h"
NodeType::ArgResultTypes NodeType::Translate(Record *R) {
const std::string &Name = R->getName();
if (Name == "DNVT_void") return Void;
if (Name == "DNVT_val" ) return Val;
if (Name == "DNVT_arg0") return Arg0;
if (Name == "DNVT_ptr" ) return Ptr;
throw "Unknown DagNodeValType '" + Name + "'!";
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
// updateNodeType - Set the node type of N to VT if VT contains information. If
// N already contains a conflicting type, then throw an exception
//
bool TreePatternNode::updateNodeType(MVT::ValueType VT,
const std::string &RecName) {
if (VT == MVT::Other || getType() == VT) return false;
if (getType() == MVT::Other) {
setType(VT);
return true;
}
throw "Type inferfence contradiction found for pattern " + RecName;
}
std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) {
if (N.isLeaf())
return OS << N.getType() << ":" << *N.getValue();
OS << "(" << N.getType() << ":";
OS << N.getOperator()->getName();
const std::vector<TreePatternNode*> &Children = N.getChildren();
if (!Children.empty()) {
OS << " " << *Children[0];
for (unsigned i = 1, e = Children.size(); i != e; ++i)
OS << ", " << *Children[i];
}
return OS << ")";
}
void TreePatternNode::dump() const { std::cerr << *this; }
//===----------------------------------------------------------------------===//
// Pattern implementation
//
// Parse the specified DagInit into a TreePattern which we can use.
//
Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec,
InstrSelectorEmitter &ise)
: PTy(pty), TheRecord(TheRec), ISE(ise) {
// First, parse the pattern...
Tree = ParseTreePattern(RawPat);
bool MadeChange, AnyUnset;
do {
MadeChange = false;
AnyUnset = InferTypes(Tree, MadeChange);
} while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange));
if (PTy == Instruction || PTy == Expander) {
// Check to make sure there is not any unset types in the tree pattern...
if (AnyUnset) {
std::cerr << "In pattern: " << *Tree << "\n";
error("Could not infer all types!");
}
// Check to see if we have a top-level (set) of a register.
if (Tree->getOperator()->getName() == "set") {
assert(Tree->getChildren().size() == 2 && "Set with != 2 arguments?");
if (!Tree->getChild(0)->isLeaf())
error("Arg #0 of set should be a register or register class!");
DefInit *RegInit = dynamic_cast<DefInit*>(Tree->getChild(0)->getValue());
if (RegInit == 0)
error("LHS of 'set' expected to be a register or register class!");
Result = RegInit->getDef();
Tree = Tree->getChild(1);
}
}
Resolved = !AnyUnset;
}
void Pattern::error(const std::string &Msg) {
std::string M = "In ";
switch (PTy) {
case Nonterminal: M += "nonterminal "; break;
case Instruction: M += "instruction "; break;
case Expander : M += "expander "; break;
}
throw M + TheRecord->getName() + ": " + Msg;
}
static MVT::ValueType getIntrinsicType(Record *R) {
// Check to see if this is a register or a register class...
if (R->isSubClassOf("RegisterClass")) {
return getValueType(R->getValueAsDef("RegType"));
} else if (R->isSubClassOf("Register")) {
std::cerr << "WARNING: Explicit registers not handled yet!\n";
return MVT::Other;
} else if (R->isSubClassOf("Nonterminal")) {
//std::cerr << "Warning nonterminal type not handled yet:" << R->getName()
// << "\n";
return MVT::Other;
}
throw "Error: Unknown value used: " + R->getName();
}
TreePatternNode *Pattern::ParseTreePattern(DagInit *DI) {
Record *Operator = DI->getNodeType();
const std::vector<Init*> &Args = DI->getArgs();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Args.size() != 1)
error("Type cast only valid for a leaf node!");
Init *Arg = Args[0];
TreePatternNode *New;
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
New = new TreePatternNode(DI);
// If it's a regclass or something else known, set the type.
New->setType(getIntrinsicType(DI->getDef()));
} else {
Arg->dump();
error("Unknown leaf value for tree pattern!");
}
// Apply the type cast...
New->updateNodeType(getValueType(Operator), TheRecord->getName());
return New;
}
if (!ISE.getNodeTypes().count(Operator))
error("Unrecognized node '" + Operator->getName() + "'!");
std::vector<TreePatternNode*> Children;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Init *Arg = Args[i];
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
Children.push_back(ParseTreePattern(DI));
} else if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
Children.push_back(new TreePatternNode(DI));
// If it's a regclass or something else known, set the type.
Children.back()->setType(getIntrinsicType(DI->getDef()));
} else {
Arg->dump();
error("Unknown leaf value for tree pattern!");
}
}
return new TreePatternNode(Operator, Children);
}
// InferTypes - Perform type inference on the tree, returning true if there
// are any remaining untyped nodes and setting MadeChange if any changes were
// made.
bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) {
if (N->isLeaf()) return N->getType() == MVT::Other;
bool AnyUnset = false;
Record *Operator = N->getOperator();
assert(ISE.getNodeTypes().count(Operator) && "No node info for node!");
const NodeType &NT = ISE.getNodeTypes()[Operator];
// Check to see if we can infer anything about the argument types from the
// return types...
const std::vector<TreePatternNode*> &Children = N->getChildren();
if (Children.size() != NT.ArgTypes.size())
error("Incorrect number of children for " + Operator->getName() + " node!");
for (unsigned i = 0, e = Children.size(); i != e; ++i) {
TreePatternNode *Child = Children[i];
AnyUnset |= InferTypes(Child, MadeChange);
switch (NT.ArgTypes[i]) {
case NodeType::Arg0:
MadeChange |= Child->updateNodeType(Children[0]->getType(),
TheRecord->getName());
break;
case NodeType::Val:
if (Child->getType() == MVT::isVoid)
error("Inferred a void node in an illegal place!");
break;
case NodeType::Ptr:
MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(),
TheRecord->getName());
break;
default: assert(0 && "Invalid argument ArgType!");
}
}
// See if we can infer anything about the return type now...
switch (NT.ResultType) {
case NodeType::Void:
MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName());
break;
case NodeType::Arg0:
MadeChange |= N->updateNodeType(Children[0]->getType(),
TheRecord->getName());
break;
case NodeType::Ptr:
MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(),
TheRecord->getName());
break;
case NodeType::Val:
if (N->getType() == MVT::isVoid)
error("Inferred a void node in an illegal place!");
break;
default:
assert(0 && "Unhandled type constraint!");
break;
}
return AnyUnset | N->getType() == MVT::Other;
}
std::ostream &operator<<(std::ostream &OS, const Pattern &P) {
switch (P.getPatternType()) {
case Pattern::Nonterminal: OS << "Nonterminal pattern "; break;
case Pattern::Instruction: OS << "Instruction pattern "; break;
case Pattern::Expander: OS << "Expander pattern "; break;
}
OS << P.getRecord()->getName() << ":\t";
if (Record *Result = P.getResult())
OS << Result->getName() << " = ";
OS << *P.getTree();
if (!P.isResolved())
OS << " [not completely resolved]";
return OS;
}
//===----------------------------------------------------------------------===//
// InstrSelectorEmitter implementation
//
/// ReadNodeTypes - Read in all of the node types in the current RecordKeeper,
/// turning them into the more accessible NodeTypes data structure.
///
void InstrSelectorEmitter::ReadNodeTypes() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode");
DEBUG(std::cerr << "Getting node types: ");
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
Record *Node = Nodes[i];
// Translate the return type...
NodeType::ArgResultTypes RetTy =
NodeType::Translate(Node->getValueAsDef("RetType"));
// Translate the arguments...
ListInit *Args = Node->getValueAsListInit("ArgTypes");
std::vector<NodeType::ArgResultTypes> ArgTypes;
for (unsigned a = 0, e = Args->getSize(); a != e; ++a) {
if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a)))
ArgTypes.push_back(NodeType::Translate(DI->getDef()));
else
throw "In node " + Node->getName() + ", argument is not a Def!";
if (a == 0 && ArgTypes.back() == NodeType::Arg0)
throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!";
if (ArgTypes.back() == NodeType::Void)
throw "In node " + Node->getName() + ", args cannot be void type!";
}
if (RetTy == NodeType::Arg0 && Args->getSize() == 0)
throw "In node " + Node->getName() +
", invalid return type for nullary node!";
// Add the node type mapping now...
NodeTypes[Node] = NodeType(RetTy, ArgTypes);
DEBUG(std::cerr << Node->getName() << ", ");
}
DEBUG(std::cerr << "DONE!\n");
}
// ReadNonTerminals - Read in all nonterminals and incorporate them into our
// pattern database.
void InstrSelectorEmitter::ReadNonterminals() {
std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal");
for (unsigned i = 0, e = NTs.size(); i != e; ++i) {
DagInit *DI = NTs[i]->getValueAsDag("Pattern");
Patterns[NTs[i]] = new Pattern(Pattern::Nonterminal, DI, NTs[i], *this);
DEBUG(std::cerr << "Parsed " << *Patterns[NTs[i]] << "\n");
}
}
/// ReadInstructionPatterns - Read in all subclasses of Instruction, and process
/// those with a useful Pattern field.
///
void InstrSelectorEmitter::ReadInstructionPatterns() {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
Record *Inst = Insts[i];
if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) {
Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this);
DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n");
}
}
}
/// ReadExpanderPatterns - Read in all expander patterns...
///
void InstrSelectorEmitter::ReadExpanderPatterns() {
std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander");
for (unsigned i = 0, e = Expanders.size(); i != e; ++i) {
Record *Expander = Expanders[i];
DagInit *DI = Expander->getValueAsDag("Pattern");
Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this);
DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n");
}
}
// InstantiateNonterminals - Instantiate any unresolved nonterminals with
// information from the context that they are used in.
void InstrSelectorEmitter::InstantiateNonterminals() {
for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
E = Patterns.end(); I != E; ++I) {
}
}
void InstrSelectorEmitter::run(std::ostream &OS) {
// Type-check all of the node types to ensure we "understand" them.
ReadNodeTypes();
// Read in all of the nonterminals, instructions, and expanders...
ReadNonterminals();
ReadInstructionPatterns();
ReadExpanderPatterns();
// Instantiate any unresolved nonterminals with information from the context
// that they are used in.
InstantiateNonterminals();
}