llvm-6502/lib/CodeGen/RegAllocGreedy.cpp

426 lines
15 KiB
C++
Raw Normal View History

//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "LiveIntervalUnion.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
// context
MachineFunction *MF;
BitVector ReservedRegs;
// analyses
LiveStacks *LS;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
MachineLoopRanges *LoopRanges;
// state
std::auto_ptr<Spiller> SpillerInstance;
std::auto_ptr<SplitAnalysis> SA;
public:
RAGreedy();
/// Return the pass name.
virtual const char* getPassName() const {
return "Greedy Register Allocator";
}
/// RAGreedy analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *SpillerInstance; }
virtual float getPriority(LiveInterval *LI);
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
private:
bool checkUncachedInterference(LiveInterval&, unsigned);
LiveInterval *getSingleInterference(LiveInterval&, unsigned);
bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
unsigned findInterferenceFreeReg(MachineLoopRange*,
LiveInterval&, AllocationOrder&);
unsigned tryReassign(LiveInterval&, AllocationOrder&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
AU.addRequiredTransitive<RegisterCoalescer>();
AU.addRequired<CalculateSpillWeights>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineLoopRanges>();
AU.addPreserved<MachineLoopRanges>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
RegAllocBase::releaseMemory();
}
float RAGreedy::getPriority(LiveInterval *LI) {
float Priority = LI->weight;
// Prioritize hinted registers so they are allocated first.
std::pair<unsigned, unsigned> Hint;
if (Hint.first || Hint.second) {
// The hint can be target specific, a virtual register, or a physreg.
Priority *= 2;
// Prefer physreg hints above anything else.
if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
Priority *= 2;
}
return Priority;
}
// Check interference without using the cache.
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
if (subQ.checkInterference())
return true;
}
return false;
}
/// getSingleInterference - Return the single interfering virtual register
/// assigned to PhysReg. Return 0 if more than one virtual register is
/// interfering.
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
// Check physreg and aliases.
LiveInterval *Interference = 0;
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
if (Q.checkInterference()) {
if (Interference)
return 0;
Q.collectInterferingVRegs(1);
if (!Q.seenAllInterferences())
return 0;
Interference = Q.interferingVRegs().front();
}
}
return Interference;
}
// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
unsigned WantedPhysReg) {
assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
"Can only reassign virtual registers");
assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
"inconsistent phys reg assigment");
AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
while (unsigned PhysReg = Order.next()) {
// Don't reassign to a WantedPhysReg alias.
if (TRI->regsOverlap(PhysReg, WantedPhysReg))
continue;
if (checkUncachedInterference(InterferingVReg, PhysReg))
continue;
// Reassign the interfering virtual reg to this physical reg.
unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
VRM->clearVirt(InterferingVReg.reg);
VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);
return true;
}
return false;
}
/// reassignInterferences - Reassign all interferences to different physical
/// registers such that Virtreg can be assigned to PhysReg.
/// Currently this only works with a single interference.
/// @param VirtReg Currently unassigned virtual register.
/// @param PhysReg Physical register to be cleared.
/// @return True on success, false if nothing was changed.
bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
if (!InterferingVReg)
return false;
if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
return false;
return reassignVReg(*InterferingVReg, PhysReg);
}
/// tryReassign - Try to reassign interferences to different physregs.
/// @param VirtReg Currently unassigned virtual register.
/// @param Order Physregs to try.
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
Order.rewind();
while (unsigned PhysReg = Order.next())
if (reassignInterferences(VirtReg, PhysReg))
return PhysReg;
return 0;
}
/// findInterferenceFreeReg - Find a physical register in Order where Loop has
/// no interferences with VirtReg.
unsigned RAGreedy::findInterferenceFreeReg(MachineLoopRange *Loop,
LiveInterval &VirtReg,
AllocationOrder &Order) {
Order.rewind();
while (unsigned PhysReg = Order.next()) {
bool interference = false;
for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
if (query(VirtReg, *AI).checkLoopInterference(Loop)) {
interference = true;
break;
}
}
if (!interference)
return PhysReg;
}
// No physreg found.
return 0;
}
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new SplitVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*>&SplitVRegs) {
NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
// Get the set of loops that have VirtReg uses and are splittable.
SplitAnalysis::LoopPtrSet SplitLoopSet;
SA->getSplitLoops(SplitLoopSet);
// Order loops by descending area.
SmallVector<MachineLoopRange*, 8> SplitLoops;
for (SplitAnalysis::LoopPtrSet::const_iterator I = SplitLoopSet.begin(),
E = SplitLoopSet.end(); I != E; ++I)
SplitLoops.push_back(LoopRanges->getLoopRange(*I));
array_pod_sort(SplitLoops.begin(), SplitLoops.end(),
MachineLoopRange::byAreaDesc);
// Find the first loop that is interference-free for some register in the
// allocation order.
MachineLoopRange *Loop = 0;
for (unsigned i = 0, e = SplitLoops.size(); i != e; ++i) {
if (unsigned PhysReg = findInterferenceFreeReg(SplitLoops[i],
VirtReg, Order)) {
Loop = SplitLoops[i];
DEBUG(dbgs() << " " << TRI->getName(PhysReg)
<< " has no interferences in " << *Loop << '\n');
break;
}
}
if (!Loop) {
DEBUG(dbgs() << " All candidate loops have interference.\n");
return 0;
}
// Execute the split around Loop.
SmallVector<LiveInterval*, 4> SpillRegs;
LiveRangeEdit LREdit(VirtReg, SplitVRegs, SpillRegs);
SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit)
.splitAroundLoop(Loop->getLoop());
// We have new split regs, don't assign anything.
return 0;
}
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<unsigned, 8> PhysRegSpillCands;
// Check for an available register in this class.
AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
while (unsigned PhysReg = Order.next()) {
// Check interference and as a side effect, intialize queries for this
// VirtReg and its aliases.
unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg);
if (InterfReg == 0) {
// Found an available register.
return PhysReg;
}
assert(!VirtReg.empty() && "Empty VirtReg has interference");
LiveInterval *InterferingVirtReg =
Queries[InterfReg].firstInterference().liveUnionPos().value();
// The current VirtReg must either be spillable, or one of its interferences
// must have less spill weight.
if (InterferingVirtReg->weight < VirtReg.weight )
PhysRegSpillCands.push_back(PhysReg);
}
// Try to reassign interferences.
if (unsigned PhysReg = tryReassign(VirtReg, Order))
return PhysReg;
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, SplitVRegs);
if (PhysReg || !SplitVRegs.empty())
return PhysReg;
// Try to spill another interfering reg with less spill weight.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
//
// FIXME: do this in two steps: (1) check for unspillable interferences while
// accumulating spill weight; (2) spill the interferences with lowest
// aggregate spill weight.
for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return *PhysRegI;
}
// No other spill candidates were found, so spill the current VirtReg.
DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
SmallVector<LiveInterval*, 1> pendingSpills;
spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
MF = &mf;
RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
DomTree = &getAnalysis<MachineDominatorTree>();
ReservedRegs = TRI->getReservedRegs(*MF);
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Loops = &getAnalysis<MachineLoopInfo>();
LoopRanges = &getAnalysis<MachineLoopRanges>();
SA.reset(new SplitAnalysis(*MF, *LIS, *Loops));
allocatePhysRegs();
addMBBLiveIns(MF);
// Run rewriter
{
NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*MF, *VRM, LIS);
}
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}