llvm-6502/include/llvm/AbstractTypeUser.h

168 lines
6.0 KiB
C
Raw Normal View History

//===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface -----*- C++ -*--=//
//
// The AbstractTypeUser class is an interface to be implemented by classes who
// could possible use an abstract type. Abstract types are denoted by the
// isAbstract flag set to true in the Type class. These are classes that
// contain an Opaque type in their structure somehow.
//
// Classes must implement this interface so that they may be notified when an
// abstract type is resolved. Abstract types may be resolved into more concrete
// types through: linking, parsing, and bytecode reading. When this happens,
// all of the users of the type must be updated to reference the new, more
// concrete type. They are notified through the AbstractTypeUser interface.
//
// In addition to this, AbstractTypeUsers must keep the use list of the
// potentially abstract type that they reference up-to-date. To do this in a
// nice, transparent way, the PATypeHandle class is used to hold "Potentially
// Abstract Types", and keep the use list of the abstract types up-to-date.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ABSTRACT_TYPE_USER_H
#define LLVM_ABSTRACT_TYPE_USER_H
// This is the "master" include for <cassert> Whether this file needs it or not,
// it must always include <cassert> for the files which include
// llvm/AbstractTypeUser.h
//
// In this way, most every LLVM source file will have access to the assert()
// macro without having to #include <cassert> directly.
//
#include <cassert>
class Type;
class DerivedType;
class AbstractTypeUser {
protected:
virtual ~AbstractTypeUser() {} // Derive from me
public:
// refineAbstractType - The callback method invoked when an abstract type
// has been found to be more concrete. A class must override this method to
// update its internal state to reference NewType instead of OldType. Soon
// after this method is invoked, OldType shall be deleted, so referencing it
// is quite unwise.
//
// Another case that is important to consider is when a type is refined, but
// stays in the same place in memory. In this case OldTy will equal NewTy.
// This callback just notifies ATU's that the underlying structure of the type
// has changed... but any previously used properties are still valid.
//
// Note that it is possible to refine a type with parameters OldTy==NewTy, and
// OldTy is no longer abstract. In this case, abstract type users should
// release their hold on a type, because it went from being abstract to
// concrete.
//
virtual void refineAbstractType(const DerivedType *OldTy,
const Type *NewTy) = 0;
// for debugging...
virtual void dump() const = 0;
};
// PATypeHandle - Handle to a Type subclass. This class is parameterized so
// that users can have handles to FunctionType's that are still specialized, for
// example. This class is a simple class used to keep the use list of abstract
// types up-to-date.
//
class PATypeHandle {
const Type *Ty;
AbstractTypeUser * const User;
// These functions are defined at the bottom of Type.h. See the comment there
// for justification.
void addUser();
void removeUser();
public:
// ctor - Add use to type if abstract. Note that Ty must not be null
inline PATypeHandle(const Type *ty, AbstractTypeUser *user)
: Ty(ty), User(user) {
addUser();
}
// ctor - Add use to type if abstract.
inline PATypeHandle(const PATypeHandle &T) : Ty(T.Ty), User(T.User) {
addUser();
}
// dtor - Remove reference to type...
inline ~PATypeHandle() { removeUser(); }
// Automatic casting operator so that the handle may be used naturally
inline operator const Type *() const { return Ty; }
inline const Type *get() const { return Ty; }
// operator= - Allow assignment to handle
inline const Type *operator=(const Type *ty) {
if (Ty != ty) { // Ensure we don't accidentally drop last ref to Ty
removeUser();
Ty = ty;
addUser();
}
return Ty;
}
// operator= - Allow assignment to handle
inline const Type *operator=(const PATypeHandle &T) {
return operator=(T.Ty);
}
inline bool operator==(const Type *ty) {
return Ty == ty;
}
// operator-> - Allow user to dereference handle naturally...
inline const Type *operator->() const { return Ty; }
// removeUserFromConcrete - This function should be called when the User is
// notified that our type is refined... and the type is being refined to
// itself, which is now a concrete type. When a type becomes concrete like
// this, we MUST remove ourself from the AbstractTypeUser list, even though
// the type is apparently concrete.
//
void removeUserFromConcrete();
};
// PATypeHolder - Holder class for a potentially abstract type. This functions
// as both a handle (as above) and an AbstractTypeUser. It uses the callback to
// keep its pointer member updated to the current version of the type.
//
struct PATypeHolder : public AbstractTypeUser, public PATypeHandle {
inline PATypeHolder(const Type *ty) : PATypeHandle(ty, this) {}
inline PATypeHolder(const PATypeHolder &T)
: AbstractTypeUser(T), PATypeHandle(T, this) {}
// refineAbstractType - All we do is update our PATypeHandle member to point
// to the new type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
assert(get() == (const Type*)OldTy && "Can't refine to unknown value!");
// Check to see if the type just became concrete. If so, we have to
// removeUser to get off its AbstractTypeUser list
removeUserFromConcrete();
if ((const Type*)OldTy != NewTy)
PATypeHandle::operator=(NewTy);
}
// operator= - Allow assignment to handle
inline const Type *operator=(const Type *ty) {
return PATypeHandle::operator=(ty);
}
// operator= - Allow assignment to handle
inline const Type *operator=(const PATypeHandle &T) {
return PATypeHandle::operator=(T);
}
inline const Type *operator=(const PATypeHolder &H) {
return PATypeHandle::operator=(H);
}
void dump() const;
};
#endif