llvm-6502/utils/TableGen/CodeGenTarget.cpp

570 lines
21 KiB
C++
Raw Normal View History

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes throw exceptions on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
static cl::opt<unsigned>
AsmParserNum("asmparsernum", cl::init(0),
cl::desc("Make -gen-asm-parser emit assembly parser #N"));
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}
std::string llvm::getName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::iPTR: return "TLI.getPointerTy()";
case MVT::iPTRAny: return "TLI.getPointerTy()";
default: return getEnumName(T);
}
}
std::string llvm::getEnumName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::vAny: return "MVT::vAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::isVoid";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v32i8: return "MVT::v32i8";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v16i16: return "MVT::v16i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v8i32: return "MVT::v8i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v4i64: return "MVT::v4i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v8f32: return "MVT::v8f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v4f64: return "MVT::v4f64";
case MVT::Metadata: return "MVT::Metadata";
case MVT::iPTR: return "MVT::iPTR";
case MVT::iPTRAny: return "MVT::iPTRAny";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
std::string Namespace = R->getValueAsString("Namespace");
if (Namespace.empty()) return R->getName();
return Namespace + "::" + R->getName();
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget() {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
throw std::string("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
throw std::string("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
const std::string &CodeGenTarget::getName() const {
return TargetRec->getName();
}
std::string CodeGenTarget::getInstNamespace() const {
for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
// Make sure not to pick up "TargetOpcode" by accidentally getting
// the namespace off the PHI instruction or something.
if ((*i)->Namespace != "TargetOpcode")
return (*i)->Namespace;
}
return "";
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *CodeGenTarget::getAsmParser() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
if (AsmParserNum >= LI.size())
throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
return LI[AsmParserNum];
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
return LI[AsmWriterNum];
}
void CodeGenTarget::ReadRegisters() const {
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
if (Regs.empty())
throw std::string("No 'Register' subclasses defined!");
Registers.reserve(Regs.size());
Registers.assign(Regs.begin(), Regs.end());
}
CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) {
DeclaredSpillSize = R->getValueAsInt("SpillSize");
DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment");
}
const std::string &CodeGenRegister::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadRegisterClasses() const {
std::vector<Record*> RegClasses =
Records.getAllDerivedDefinitions("RegisterClass");
if (RegClasses.empty())
throw std::string("No 'RegisterClass' subclasses defined!");
RegisterClasses.reserve(RegClasses.size());
RegisterClasses.assign(RegClasses.begin(), RegClasses.end());
}
std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record *R) const {
std::vector<MVT::SimpleValueType> Result;
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
if (R == RC.Elements[ei]) {
const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
}
}
}
// Remove duplicates.
array_pod_sort(Result.begin(), Result.end());
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
return Result;
}
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
// Rename anonymous register classes.
if (R->getName().size() > 9 && R->getName()[9] == '.') {
static unsigned AnonCounter = 0;
R->setName("AnonRegClass_"+utostr(AnonCounter++));
}
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Record *Type = TypeList[i];
if (!Type->isSubClassOf("ValueType"))
throw "RegTypes list member '" + Type->getName() +
"' does not derive from the ValueType class!";
VTs.push_back(getValueType(Type));
}
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
Record *Reg = RegList[i];
if (!Reg->isSubClassOf("Register"))
throw "Register Class member '" + Reg->getName() +
"' does not derive from the Register class!";
Elements.push_back(Reg);
}
std::vector<Record*> SubRegClassList =
R->getValueAsListOfDefs("SubRegClassList");
for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) {
Record *SubRegClass = SubRegClassList[i];
if (!SubRegClass->isSubClassOf("RegisterClass"))
throw "Register Class member '" + SubRegClass->getName() +
"' does not derive from the RegisterClass class!";
SubRegClasses.push_back(SubRegClass);
}
// Allow targets to override the size in bits of the RegisterClass.
unsigned Size = R->getValueAsInt("Size");
Namespace = R->getValueAsString("Namespace");
SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
SpillAlignment = R->getValueAsInt("Alignment");
CopyCost = R->getValueAsInt("CopyCost");
MethodBodies = R->getValueAsCode("MethodBodies");
MethodProtos = R->getValueAsCode("MethodProtos");
}
const std::string &CodeGenRegisterClass::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadLegalValueTypes() const {
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
LegalValueTypes.push_back(RCs[i].VTs[ri]);
// Remove duplicates.
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
void CodeGenTarget::ReadInstructions() const {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
throw std::string("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
std::string InstFormatName =
getAsmWriter()->getValueAsString("InstFormatName");
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
std::string AsmStr = Insts[i]->getValueAsString(InstFormatName);
Instructions[Insts[i]] = new CodeGenInstruction(Insts[i], AsmStr);
}
}
static const CodeGenInstruction *
GetInstByName(const char *Name,
const DenseMap<const Record*, CodeGenInstruction*> &Insts) {
const Record *Rec = Records.getDef(Name);
DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.find(Rec);
if (Rec == 0 || I == Insts.end())
throw std::string("Could not find '") + Name + "' instruction!";
return I->second;
}
namespace {
/// SortInstByName - Sorting predicate to sort instructions by name.
///
struct SortInstByName {
bool operator()(const CodeGenInstruction *Rec1,
const CodeGenInstruction *Rec2) const {
return Rec1->TheDef->getName() < Rec2->TheDef->getName();
}
};
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
void CodeGenTarget::ComputeInstrsByEnum() const {
const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
const CodeGenInstruction *PHI = GetInstByName("PHI", Insts);
const CodeGenInstruction *INLINEASM = GetInstByName("INLINEASM", Insts);
const CodeGenInstruction *DBG_LABEL = GetInstByName("DBG_LABEL", Insts);
const CodeGenInstruction *EH_LABEL = GetInstByName("EH_LABEL", Insts);
const CodeGenInstruction *GC_LABEL = GetInstByName("GC_LABEL", Insts);
const CodeGenInstruction *KILL = GetInstByName("KILL", Insts);
const CodeGenInstruction *EXTRACT_SUBREG =
GetInstByName("EXTRACT_SUBREG", Insts);
const CodeGenInstruction *INSERT_SUBREG =
GetInstByName("INSERT_SUBREG", Insts);
const CodeGenInstruction *IMPLICIT_DEF = GetInstByName("IMPLICIT_DEF", Insts);
const CodeGenInstruction *SUBREG_TO_REG =
GetInstByName("SUBREG_TO_REG", Insts);
const CodeGenInstruction *COPY_TO_REGCLASS =
GetInstByName("COPY_TO_REGCLASS", Insts);
const CodeGenInstruction *DBG_VALUE = GetInstByName("DBG_VALUE", Insts);
const CodeGenInstruction *REG_SEQUENCE = GetInstByName("REG_SEQUENCE", Insts);
// Print out the rest of the instructions now.
InstrsByEnum.push_back(PHI);
InstrsByEnum.push_back(INLINEASM);
InstrsByEnum.push_back(DBG_LABEL);
InstrsByEnum.push_back(EH_LABEL);
InstrsByEnum.push_back(GC_LABEL);
InstrsByEnum.push_back(KILL);
InstrsByEnum.push_back(EXTRACT_SUBREG);
InstrsByEnum.push_back(INSERT_SUBREG);
InstrsByEnum.push_back(IMPLICIT_DEF);
InstrsByEnum.push_back(SUBREG_TO_REG);
InstrsByEnum.push_back(COPY_TO_REGCLASS);
InstrsByEnum.push_back(DBG_VALUE);
InstrsByEnum.push_back(REG_SEQUENCE);
unsigned EndOfPredefines = InstrsByEnum.size();
for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.begin(), E = Insts.end(); I != E; ++I) {
const CodeGenInstruction *CGI = I->second;
if (CGI != PHI &&
CGI != INLINEASM &&
CGI != DBG_LABEL &&
CGI != EH_LABEL &&
CGI != GC_LABEL &&
CGI != KILL &&
CGI != EXTRACT_SUBREG &&
CGI != INSERT_SUBREG &&
CGI != IMPLICIT_DEF &&
CGI != SUBREG_TO_REG &&
CGI != COPY_TO_REGCLASS &&
CGI != DBG_VALUE &&
CGI != REG_SEQUENCE)
InstrsByEnum.push_back(CGI);
}
// All of the instructions are now in random order based on the map iteration.
// Sort them by name.
std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
SortInstByName());
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = R->getValueAsString("SelectFunc");
RootNodes = R->getValueAsListOfDefs("RootNodes");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else {
errs() << "Unsupported SD Node property '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
bool TargetOnly) {
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
std::vector<CodeGenIntrinsic> Result;
for (unsigned i = 0, e = I.size(); i != e; ++i) {
bool isTarget = I[i]->getValueAsBit("isTarget");
if (isTarget == TargetOnly)
Result.push_back(CodeGenIntrinsic(I[i]));
}
return Result;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
TheDef = R;
std::string DefName = R->getName();
ModRef = WriteMem;
isOverloaded = false;
isCommutative = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
TargetPrefix = R->getValueAsString("TargetPrefix");
Name = R->getValueAsString("LLVMName");
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
!= (TargetPrefix + "."))
throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
TargetPrefix + ".'!";
}
// Parse the list of return types.
std::vector<MVT::SimpleValueType> OverloadedVTs;
ListInit *TypeList = R->getValueAsListInit("RetTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else {
VT = getValueType(TyEl->getValueAsDef("VT"));
}
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid)
throw "Intrinsic '" + DefName + " has void in result type list!";
IS.RetVTs.push_back(VT);
IS.RetTypeDefs.push_back(TyEl);
}
// Parse the list of parameter types.
TypeList = R->getValueAsListInit("ParamTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
throw "Intrinsic '" + DefName + " has void in result type list!";
IS.ParamVTs.push_back(VT);
IS.ParamTypeDefs.push_back(TyEl);
}
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("Properties");
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadArgMem")
ModRef = ReadArgMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ReadMem;
else if (Property->getName() == "IntrWriteArgMem")
ModRef = WriteArgMem;
else if (Property->getName() == "IntrWriteMem")
ModRef = WriteMem;
else if (Property->getName() == "Commutative")
isCommutative = true;
else if (Property->isSubClassOf("NoCapture")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
} else
assert(0 && "Unknown property!");
}
}