462 lines
13 KiB
C++
Raw Normal View History

// $Id$
//---------------------------------------------------------------------------
// File:
// InstrForest.cpp
//
// Purpose:
// Convert SSA graph to instruction trees for instruction selection.
//
// Strategy:
// The key goal is to group instructions into a single
// tree if one or more of them might be potentially combined into a single
// complex instruction in the target machine.
// Since this grouping is completely machine-independent, we do it as
// aggressive as possible to exploit any possible taret instructions.
// In particular, we group two instructions O and I if:
// (1) Instruction O computes an operand used by instruction I,
// and (2) O and I are part of the same basic block,
// and (3) O has only a single use, viz., I.
//
// History:
// 6/28/01 - Vikram Adve - Created
//
//---------------------------------------------------------------------------
//************************** System Include Files **************************/
#include <assert.h>
#include <iostream.h>
#include <bool.h>
#include <string>
//*************************** User Include Files ***************************/
#include "llvm/Type.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/Instruction.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/BasicBlock.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Bytecode/Writer.h"
#include "llvm/Tools/CommandLine.h"
#include "llvm/LLC/CompileContext.h"
#include "llvm/Codegen/MachineInstr.h"
#include "llvm/Codegen/InstrForest.h"
//************************ Class Implementations **************************/
//------------------------------------------------------------------------
// class InstrTreeNode
//------------------------------------------------------------------------
InstrTreeNode::InstrTreeNode(InstrTreeNodeType nodeType,
Value* _val)
: treeNodeType(nodeType),
val(_val)
{
basicNode.leftChild = NULL;
basicNode.rightChild = NULL;
basicNode.parent = NULL;
basicNode.opLabel = InvalidOp;
basicNode.treeNodePtr = this;
}
InstrTreeNode::~InstrTreeNode()
{}
void
InstrTreeNode::dump(int dumpChildren,
int indent) const
{
this->dumpNode(indent);
if (dumpChildren)
{
if (leftChild())
leftChild()->dump(dumpChildren, indent+1);
if (rightChild())
rightChild()->dump(dumpChildren, indent+1);
}
}
InstructionNode::InstructionNode(Instruction* _instr)
: InstrTreeNode(NTInstructionNode, _instr)
{
OpLabel opLabel = _instr->getOpcode();
// Distinguish special cases of some instructions such as Ret and Br
//
if (opLabel == Instruction::Ret && ((ReturnInst*) _instr)->getReturnValue())
{
opLabel = RetValueOp; // ret(value) operation
}
else if (opLabel == Instruction::Br && ! ((BranchInst*) _instr)->isUnconditional())
{
opLabel = BrCondOp; // br(cond) operation
}
else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT)
{
opLabel = SetCCOp; // common label for all SetCC ops
}
else if (opLabel == Instruction::Alloca && _instr->getNumOperands() > 0)
{
opLabel = AllocaN; // Alloca(ptr, N) operation
}
else if ((opLabel == Instruction::Load ||
opLabel == Instruction::GetElementPtr)
&& ((MemAccessInst*)_instr)->getFirstOffsetIdx() > 0)
{
opLabel = opLabel + 100; // load/getElem with index vector
}
else if (opLabel == Instruction::Cast)
{
const Type* instrValueType = _instr->getType();
switch(instrValueType->getPrimitiveID())
{
case Type::BoolTyID: opLabel = ToBoolTy; break;
case Type::UByteTyID: opLabel = ToUByteTy; break;
case Type::SByteTyID: opLabel = ToSByteTy; break;
case Type::UShortTyID: opLabel = ToUShortTy; break;
case Type::ShortTyID: opLabel = ToShortTy; break;
case Type::UIntTyID: opLabel = ToUIntTy; break;
case Type::IntTyID: opLabel = ToIntTy; break;
case Type::ULongTyID: opLabel = ToULongTy; break;
case Type::LongTyID: opLabel = ToLongTy; break;
case Type::FloatTyID: opLabel = ToFloatTy; break;
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
default:
if (instrValueType->isArrayType())
opLabel = ToArrayTy;
else if (instrValueType->isPointerType())
opLabel = ToPointerTy;
else
; // Just use `Cast' opcode otherwise. It's probably ignored.
break;
}
}
basicNode.opLabel = opLabel;
}
void
InstructionNode::reverseBinaryArgumentOrder()
{
assert(getInstruction()->isBinaryOp());
// switch arguments for the instruction
((BinaryOperator*) getInstruction())->swapOperands();
// switch arguments for this tree node itself
BasicTreeNode* leftCopy = basicNode.leftChild;
basicNode.leftChild = basicNode.rightChild;
basicNode.rightChild = leftCopy;
}
void
InstructionNode::dumpNode(int indent) const
{
for (int i=0; i < indent; i++)
cout << " ";
cout << getInstruction()->getOpcodeName();
const vector<MachineInstr*>& mvec = getInstruction()->getMachineInstrVec();
if (mvec.size() > 0)
cout << "\tMachine Instructions: ";
for (unsigned int i=0; i < mvec.size(); i++)
{
mvec[i]->dump(0);
if (i < mvec.size() - 1)
cout << "; ";
}
cout << endl;
}
VRegListNode::VRegListNode()
: InstrTreeNode(NTVRegListNode, NULL)
{
basicNode.opLabel = VRegListOp;
}
void
VRegListNode::dumpNode(int indent) const
{
for (int i=0; i < indent; i++)
cout << " ";
cout << "List" << endl;
}
VRegNode::VRegNode(Value* _val)
: InstrTreeNode(NTVRegNode, _val)
{
basicNode.opLabel = VRegNodeOp;
}
void
VRegNode::dumpNode(int indent) const
{
for (int i=0; i < indent; i++)
cout << " ";
cout << "VReg " << getValue() << "\t(type "
<< (int) getValue()->getValueType() << ")" << endl;
}
ConstantNode::ConstantNode(ConstPoolVal* constVal)
: InstrTreeNode(NTConstNode, constVal)
{
basicNode.opLabel = ConstantNodeOp;
}
void
ConstantNode::dumpNode(int indent) const
{
for (int i=0; i < indent; i++)
cout << " ";
cout << "Constant " << getValue() << "\t(type "
<< (int) getValue()->getValueType() << ")" << endl;
}
LabelNode::LabelNode(BasicBlock* _bblock)
: InstrTreeNode(NTLabelNode, _bblock)
{
basicNode.opLabel = LabelNodeOp;
}
void
LabelNode::dumpNode(int indent) const
{
for (int i=0; i < indent; i++)
cout << " ";
cout << "Label " << getValue() << endl;
}
//------------------------------------------------------------------------
// class InstrForest
//
// A forest of instruction trees, usually for a single method.
//------------------------------------------------------------------------
void
InstrForest::buildTreesForMethod(Method *method)
{
for (Method::inst_iterator instrIter = method->inst_begin();
instrIter != method->inst_end();
++instrIter)
{
Instruction *instr = *instrIter;
if (! instr->isPHINode())
(void) this->buildTreeForInstruction(instr);
}
}
void
InstrForest::dump() const
{
for (hash_set<InstructionNode*, ptrHashFunc >::const_iterator
treeRootIter = treeRoots.begin();
treeRootIter != treeRoots.end();
++treeRootIter)
{
(*treeRootIter)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
}
}
inline void
InstrForest::noteTreeNodeForInstr(Instruction* instr,
InstructionNode* treeNode)
{
assert(treeNode->getNodeType() == InstrTreeNode::NTInstructionNode);
(*this)[instr] = treeNode;
treeRoots.insert(treeNode); // mark node as root of a new tree
}
inline void
InstrForest::setLeftChild(InstrTreeNode* parent, InstrTreeNode* child)
{
parent->basicNode.leftChild = & child->basicNode;
child->basicNode.parent = & parent->basicNode;
if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
treeRoots.erase((InstructionNode*) child); // no longer a tree root
}
inline void
InstrForest::setRightChild(InstrTreeNode* parent, InstrTreeNode* child)
{
parent->basicNode.rightChild = & child->basicNode;
child->basicNode.parent = & parent->basicNode;
if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
treeRoots.erase((InstructionNode*) child); // no longer a tree root
}
InstructionNode*
InstrForest::buildTreeForInstruction(Instruction* instr)
{
InstructionNode* treeNode = this->getTreeNodeForInstr(instr);
if (treeNode != NULL)
{// treeNode has already been constructed for this instruction
assert(treeNode->getInstruction() == instr);
return treeNode;
}
// Otherwise, create a new tree node for this instruction.
//
treeNode = new InstructionNode(instr);
this->noteTreeNodeForInstr(instr, treeNode);
// If the instruction has more than 2 instruction operands,
// then we will not add any children. This assumes that instructions
// like 'call' that have more than 2 instruction operands do not
// ever get combined with the instructions that compute the operands.
// Note that we only count operands of type instruction and not other
// values such as branch labels for a branch or switch instruction.
//
// To do this efficiently, we'll walk all operands, build treeNodes
// for all instruction operands and save them in an array, and then
// insert children at the end if there are not more than 2.
// As a performance optimization, allocate a child array only
// if a fixed array is too small.
//
int numChildren = 0;
const unsigned int MAX_CHILD = 8;
static InstrTreeNode* fixedChildArray[MAX_CHILD];
InstrTreeNode** childArray =
(instr->getNumOperands() > MAX_CHILD)
? new (InstrTreeNode*)[instr->getNumOperands()]
: fixedChildArray;
//
// Walk the operands of the instruction
//
for (Instruction::op_iterator opIter = instr->op_begin();
opIter != instr->op_end();
++opIter)
{
Value* operand = *opIter;
// Check if the operand is a data value, not an branch label, type,
// method or module. If the operand is an address type (i.e., label
// or method) that is used in an non-branching operation, e.g., `add'.
// that should be considered a data value.
// Check latter condition here just to simplify the next IF.
bool includeAddressOperand =
((operand->getValueType() == Value::BasicBlockVal
|| operand->getValueType() == Value::MethodVal)
&& ! instr->isTerminator());
if (/* (*opIter) != NULL
&&*/ includeAddressOperand
|| operand->getValueType() == Value::InstructionVal
|| operand->getValueType() == Value::ConstantVal
|| operand->getValueType() == Value::MethodArgumentVal)
{// This operand is a data value
// An instruction that computes the incoming value is added as a
// child of the current instruction if:
// the value has only a single use
// AND both instructions are in the same basic block
// AND the instruction is not a PHI
//
// (Note that if the value has only a single use (viz., `instr'),
// the def of the value can be safely moved just before instr
// and therefore it is safe to combine these two instructions.)
//
// In all other cases, the virtual register holding the value
// is used directly, i.e., made a child of the instruction node.
//
InstrTreeNode* opTreeNode;
if (operand->getValueType() == Value::InstructionVal
&& operand->use_size() == 1
&& ((Instruction*)operand)->getParent() == instr->getParent()
&& ! ((Instruction*)operand)->isPHINode())
{
// Recursively create a treeNode for it.
opTreeNode =this->buildTreeForInstruction((Instruction*)operand);
}
else if (operand->getValueType() == Value::ConstantVal)
{
// Create a leaf node for a constant
opTreeNode = new ConstantNode((ConstPoolVal*) operand);
}
else
{
// Create a leaf node for the virtual register
opTreeNode = new VRegNode(operand);
}
childArray[numChildren] = opTreeNode;
numChildren++;
}
}
//--------------------------------------------------------------------
// Add any selected operands as children in the tree.
// Certain instructions can have more than 2 in some instances (viz.,
// a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
// array or struct). Make the operands of every such instruction into
// a right-leaning binary tree with the operand nodes at the leaves
// and VRegList nodes as internal nodes.
//--------------------------------------------------------------------
InstrTreeNode* parent = treeNode; // new VRegListNode();
int n;
if (numChildren > 2)
{
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
assert(instrOpcode == Instruction::Call ||
instrOpcode == Instruction::Load ||
instrOpcode == Instruction::Store ||
instrOpcode == Instruction::GetElementPtr);
}
// Insert the first child as a direct child
if (numChildren >= 1)
this->setLeftChild(parent, childArray[0]);
// Create a list node for children 2 .. N-1, if any
for (n = numChildren-1; n >= 2; n--)
{ // We have more than two children
InstrTreeNode* listNode = new VRegListNode();
this->setRightChild(parent, listNode);
this->setLeftChild(listNode, childArray[numChildren - n]);
parent = listNode;
}
// Now insert the last remaining child (if any).
if (numChildren >= 2)
{
assert(n == 1);
this->setRightChild(parent, childArray[numChildren - 1]);
}
if (childArray != fixedChildArray)
{
delete[] childArray;
}
return treeNode;
}