llvm-6502/lib/Target/SparcV9/SparcV9Internals.h

1190 lines
37 KiB
C
Raw Normal View History

//===-- SparcInternals.h - Header file for Sparc backend ---------*- C++ -*--=//
//
// This file defines stuff that is to be private to the Sparc backend, but is
// shared among different portions of the backend.
//
//===----------------------------------------------------------------------===//
#ifndef SPARC_INTERNALS_H
#define SPARC_INTERNALS_H
#include "SparcRegClassInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MachineSchedInfo.h"
#include "llvm/CodeGen/RegClass.h"
#include "llvm/Type.h"
#include <sys/types.h>
class UltraSparc;
// OpCodeMask definitions for the Sparc V9
//
const OpCodeMask Immed = 0x00002000; // immed or reg operand?
const OpCodeMask Annul = 0x20000000; // annul delay instr?
const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
enum SparcInstrSchedClass {
SPARC_NONE, /* Instructions with no scheduling restrictions */
SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
SPARC_IEU0, /* Integer class IEU0 */
SPARC_IEU1, /* Integer class IEU1 */
SPARC_FPM, /* FP Multiply or Divide instructions */
SPARC_FPA, /* All other FP instructions */
SPARC_CTI, /* Control-transfer instructions */
SPARC_LD, /* Load instructions */
SPARC_ST, /* Store instructions */
SPARC_SINGLE, /* Instructions that must issue by themselves */
SPARC_INV, /* This should stay at the end for the next value */
SPARC_NUM_SCHED_CLASSES = SPARC_INV
};
//---------------------------------------------------------------------------
// enum SparcMachineOpCode.
// const MachineInstrDescriptor SparcMachineInstrDesc[]
//
// Purpose:
// Description of UltraSparc machine instructions.
//
//---------------------------------------------------------------------------
enum SparcMachineOpCode {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
ENUM,
#include "SparcInstr.def"
// End-of-array marker
INVALID_OPCODE,
NUM_REAL_OPCODES = PHI, // number of valid opcodes
NUM_TOTAL_OPCODES = INVALID_OPCODE
};
// Array of machine instruction descriptions...
extern const MachineInstrDescriptor SparcMachineInstrDesc[];
//---------------------------------------------------------------------------
// class UltraSparcInstrInfo
//
// Purpose:
// Information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class MachineInstrInfo.
//---------------------------------------------------------------------------
class UltraSparcInstrInfo : public MachineInstrInfo {
public:
/*ctor*/ UltraSparcInstrInfo();
virtual bool hasResultInterlock (MachineOpCode opCode) const
{
// All UltraSPARC instructions have interlocks (note that delay slots
// are not considered here).
// However, instructions that use the result of an FCMP produce a
// 9-cycle stall if they are issued less than 3 cycles after the FCMP.
// Force the compiler to insert a software interlock (i.e., gap of
// 2 other groups, including NOPs if necessary).
return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
}
//-------------------------------------------------------------------------
// Code generation support for creating individual machine instructions
//-------------------------------------------------------------------------
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. The generated instructions are
// returned in `minstrVec'. Any temporary registers (TmpInstruction)
// created are returned in `tempVec'.
//
virtual void CreateCodeToLoadConst(Value* val,
Instruction* dest,
vector<MachineInstr*>& minstrVec,
vector<TmpInstruction*>& tempVec) const;
};
//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
//----------------------------------------------------------------------------
class LiveRange;
class UltraSparc;
class PhyRegAlloc;
class UltraSparcRegInfo : public MachineRegInfo
{
private:
// The actual register classes in the Sparc
enum RegClassIDs {
IntRegClassID,
FloatRegClassID,
IntCCRegClassID,
FloatCCRegClassID
};
// Type of registers available in Sparc. There can be several reg types
// in the same class. For instace, the float reg class has Single/Double
// types
enum RegTypes {
IntRegType,
FPSingleRegType,
FPDoubleRegType,
IntCCRegType,
FloatCCRegType
};
// the size of a value (int, float, etc..) stored in the stack frame
// WARNING: If the above enum order must be changed, also modify
// getRegisterClassOfValue method below since it assumes this particular
// order for efficiency.
// reverse pointer to get info about the ultra sparc machine
const UltraSparc *const UltraSparcInfo;
// Both int and float rguments can be passed in 6 int regs -
// %o0 to %o5 (cannot be changed)
unsigned const NumOfIntArgRegs;
unsigned const NumOfFloatArgRegs;
int const InvalidRegNum;
int SizeOfOperandOnStack;
//void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
const MachineInstr *MI,AddedInstrMapType &AIMap)const;
MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
unsigned RegClassID) const ;
void suggestReg4RetAddr(const MachineInstr * RetMI,
LiveRangeInfo& LRI) const;
void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
vector<RegClass *> RCList) const;
Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
int getRegType(const LiveRange *const LR) const {
unsigned Typ;
switch( (LR->getRegClass())->getID() ) {
case IntRegClassID: return IntRegType;
case FloatRegClassID:
Typ = LR->getTypeID();
if( Typ == Type::FloatTyID )
return FPSingleRegType;
else if( Typ == Type::DoubleTyID )
return FPDoubleRegType;
else assert(0 && "Unknown type in FloatRegClass");
case IntCCRegClassID: return IntCCRegType;
case FloatCCRegClassID: return FloatCCRegType ;
default: assert( 0 && "Unknown reg class ID");
}
}
int getRegType(const Value *const Val) const {
unsigned Typ;
switch( getRegClassIDOfValue(Val) ) {
case IntRegClassID: return IntRegType;
case FloatRegClassID:
Typ = (Val->getType())->getPrimitiveID();
if( Typ == Type::FloatTyID )
return FPSingleRegType;
else if( Typ == Type::DoubleTyID )
return FPDoubleRegType;
else assert(0 && "Unknown type in FloatRegClass");
case IntCCRegClassID: return IntCCRegType;
case FloatCCRegClassID: return FloatCCRegType ;
default: assert( 0 && "Unknown reg class ID");
}
}
// ***TODO: See this method is necessary
MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
const int RegType) const;
const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
public:
UltraSparcRegInfo(const UltraSparc *const USI ) : UltraSparcInfo(USI),
NumOfIntArgRegs(6),
NumOfFloatArgRegs(32),
InvalidRegNum(1000),
SizeOfOperandOnStack(8)
{
MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
"32 Float regs are used for float arg passing");
}
// ***** TODO Delete
~UltraSparcRegInfo(void) { } // empty destructor
inline const UltraSparc & getUltraSparcInfo() const {
return *UltraSparcInfo;
}
inline unsigned getRegClassIDOfValue (const Value *const Val,
bool isCCReg = false) const {
Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
unsigned res;
if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
(ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
res = IntRegClassID; // sparc int reg (ty=0: void)
else if( ty <= Type::DoubleTyID)
res = FloatRegClassID; // sparc float reg class
else {
cerr << "TypeID: " << ty << endl;
assert(0 && "Cannot resolve register class for type");
}
if(isCCReg)
return res + 2; // corresponidng condition code regiser
else
return res;
}
// returns the register tha contains always zero
// this is the unified register number
inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
// returns the reg used for pushing the address when a method is called.
// This can be used for other purposes between calls
unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
// and when we return from a method. It should be made sure that this
// register contains the return value when a return instruction is reached.
unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
void suggestRegs4MethodArgs(const Method *const Meth,
LiveRangeInfo& LRI) const;
void suggestRegs4CallArgs(const MachineInstr *const CallMI,
LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
void suggestReg4RetValue(const MachineInstr *const RetMI,
LiveRangeInfo& LRI ) const;
void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
AddedInstrns *const FirstAI) const;
void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
AddedInstrns *const CallAI, PhyRegAlloc &PRA) const;
void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
AddedInstrns *const RetAI) const;
// bool handleSpecialMInstr(const MachineInstr * MInst,
// LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
static void printReg(const LiveRange *const LR) ;
// this method provides a unique number for each register
inline int getUnifiedRegNum(int RegClassID, int reg) const {
if( RegClassID == IntRegClassID && reg < 32 )
return reg;
else if ( RegClassID == FloatRegClassID && reg < 64)
return reg + 32; // we have 32 int regs
else if( RegClassID == FloatCCRegClassID && reg < 4)
return reg + 32 + 64; // 32 int, 64 float
else if( RegClassID == IntCCRegClassID )
return 4+ 32 + 64; // only int cc reg
else if (reg==InvalidRegNum)
return InvalidRegNum;
else
assert(0 && "Invalid register class or reg number");
}
// given the unified register number, this gives the name
inline const string getUnifiedRegName(int reg) const {
if( reg < 32 )
return SparcIntRegOrder::getRegName(reg);
else if ( reg < (64 + 32) )
return SparcFloatRegOrder::getRegName( reg - 32);
else if( reg < (64+32+4) )
return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
else if ( reg == 64+32+4)
return "xcc"; // only integer cc reg
else if (reg== InvalidRegNum) //****** TODO: Remove */
return "<*NoReg*>";
else
assert(0 && "Invalid register number");
}
inline unsigned int getRegNumInCallersWindow(int reg) {
if (reg == InvalidRegNum || reg >= 32)
return reg;
return SparcIntRegOrder::getRegNumInCallersWindow(reg);
}
inline bool mustBeRemappedInCallersWindow(int reg) {
return (reg != InvalidRegNum && reg < 32);
}
const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
const int RegType) const;
MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
const int Offset, const int RegType) const;
MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
const unsigned DestReg, const int RegType) const;
inline bool isRegVolatile(const int RegClassID, const int Reg) const {
return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
}
inline unsigned getFramePointer() const {
return SparcIntRegOrder::i6;
}
inline unsigned getStackPointer() const {
return SparcIntRegOrder::o6;
}
inline int getInvalidRegNum() const {
return InvalidRegNum;
}
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB, PhyRegAlloc &PRA ) const;
};
/*---------------------------------------------------------------------------
Scheduling guidelines for SPARC IIi:
I-Cache alignment rules (pg 326)
-- Align a branch target instruction so that it's entire group is within
the same cache line (may be 1-4 instructions).
** Don't let a branch that is predicted taken be the last instruction
on an I-cache line: delay slot will need an entire line to be fetched
-- Make a FP instruction or a branch be the 4th instruction in a group.
For branches, there are tradeoffs in reordering to make this happen
(see pg. 327).
** Don't put a branch in a group that crosses a 32-byte boundary!
An artificial branch is inserted after every 32 bytes, and having
another branch will force the group to be broken into 2 groups.
iTLB rules:
-- Don't let a loop span two memory pages, if possible
Branch prediction performance:
-- Don't make the branch in a delay slot the target of a branch
-- Try not to have 2 predicted branches within a group of 4 instructions
(because each such group has a single branch target field).
-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
the wrong prediction bits being used in some cases).
D-Cache timing constraints:
-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
-- All other loads that hit in D-Cache have 2 cycle latency
-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
-- Mis-aligned loads or stores cause a trap. In particular, replace
mis-aligned FP double precision l/s with 2 single-precision l/s.
-- Simulations of integer codes show increase in avg. group size of
33% when code (including esp. non-faulting loads) is moved across
one branch, and 50% across 2 branches.
E-Cache timing constraints:
-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
Store buffer timing constraints:
-- Stores can be executed in same cycle as instruction producing the value
-- Stores are buffered and have lower priority for E-cache until
highwater mark is reached in the store buffer (5 stores)
Pipeline constraints:
-- Shifts can only use IEU0.
-- CC setting instructions can only use IEU1.
-- Several other instructions must only use IEU1:
EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
-- Two instructions cannot store to the same register file in a single cycle
(single write port per file).
Issue and grouping constraints:
-- FP and branch instructions must use slot 4.
-- Shift instructions cannot be grouped with other IEU0-specific instructions.
-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
-- Several instructions must be issued in a single-instruction group:
MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
--
--
Branch delay slot scheduling rules:
-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
has a 9-instruction penalty: the entire pipeline is flushed when the
second instruction reaches stage 9 (W-Writeback).
-- Avoid putting multicycle instructions, and instructions that may cause
load misses, in the delay slot of an annulling branch.
-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
delay slot of an annulling branch.
*--------------------------------------------------------------------------- */
//---------------------------------------------------------------------------
// List of CPUResources for UltraSPARC IIi.
//---------------------------------------------------------------------------
const CPUResource AllIssueSlots( "All Instr Slots", 4);
const CPUResource IntIssueSlots( "Int Instr Slots", 3);
const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
// IEUN instructions can use either Alu and should use IAluN.
// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
const CPUResource IAluN("Int ALU 1or2", 2);
const CPUResource IAlu0("Int ALU 1", 1);
const CPUResource IAlu1("Int ALU 2", 1);
const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
const CPUResource LdReturn("Load Return Unit", 1);
const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
//---------------------------------------------------------------------------
// const InstrClassRUsage SparcRUsageDesc[]
//
// Purpose:
// Resource usage information for instruction in each scheduling class.
// The InstrRUsage Objects for individual classes are specified first.
// Note that fetch and decode are decoupled from the execution pipelines
// via an instr buffer, so they are not included in the cycles below.
//---------------------------------------------------------------------------
const InstrClassRUsage NoneClassRUsage = {
SPARC_NONE,
/*totCycles*/ 7,
/* maxIssueNum */ 4,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 0,
/* V[] */ {
/*Cycle G */
/*Ccle E */
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage IEUNClassRUsage = {
SPARC_IEUN,
/*totCycles*/ 7,
/* maxIssueNum */ 3,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage IEU0ClassRUsage = {
SPARC_IEU0,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu0.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage IEU1ClassRUsage = {
SPARC_IEU1,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu1.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage FPMClassRUsage = {
SPARC_FPM,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPMIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPMAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage FPAClassRUsage = {
SPARC_FPA,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPAIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPAAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage LDClassRUsage = {
SPARC_LD,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2, },
/*numEntries*/ 6,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 },
{ LdReturn.rid, 2, 1 },
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage STClassRUsage = {
SPARC_ST,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 }
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage CTIClassRUsage = {
SPARC_CTI,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ CTIIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 },
/*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage SingleClassRUsage = {
SPARC_SINGLE,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ true,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 1,
/* feasibleSlots[] */ { 0 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage SparcRUsageDesc[] = {
NoneClassRUsage,
IEUNClassRUsage,
IEU0ClassRUsage,
IEU1ClassRUsage,
FPMClassRUsage,
FPAClassRUsage,
CTIClassRUsage,
LDClassRUsage,
STClassRUsage,
SingleClassRUsage
};
//---------------------------------------------------------------------------
// const InstrIssueDelta SparcInstrIssueDeltas[]
//
// Purpose:
// Changes to issue restrictions information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
const InstrIssueDelta SparcInstrIssueDeltas[] = {
// opCode, isSingleIssue, breaksGroup, numBubbles
// Special cases for single-issue only
// Other single issue cases are below.
//{ LDDA, true, true, 0 },
//{ STDA, true, true, 0 },
//{ LDDF, true, true, 0 },
//{ LDDFA, true, true, 0 },
{ ADDC, true, true, 0 },
{ ADDCcc, true, true, 0 },
{ SUBC, true, true, 0 },
{ SUBCcc, true, true, 0 },
//{ LDSTUB, true, true, 0 },
//{ SWAP, true, true, 0 },
//{ SWAPA, true, true, 0 },
//{ CAS, true, true, 0 },
//{ CASA, true, true, 0 },
//{ CASX, true, true, 0 },
//{ CASXA, true, true, 0 },
//{ LDFSR, true, true, 0 },
//{ LDFSRA, true, true, 0 },
//{ LDXFSR, true, true, 0 },
//{ LDXFSRA, true, true, 0 },
//{ STFSR, true, true, 0 },
//{ STFSRA, true, true, 0 },
//{ STXFSR, true, true, 0 },
//{ STXFSRA, true, true, 0 },
//{ SAVED, true, true, 0 },
//{ RESTORED, true, true, 0 },
//{ FLUSH, true, true, 9 },
//{ FLUSHW, true, true, 9 },
//{ ALIGNADDR, true, true, 0 },
{ RETURN, true, true, 0 },
//{ DONE, true, true, 0 },
//{ RETRY, true, true, 0 },
//{ WR, true, true, 0 },
//{ WRPR, true, true, 4 },
//{ RD, true, true, 0 },
//{ RDPR, true, true, 0 },
//{ TCC, true, true, 0 },
//{ SHUTDOWN, true, true, 0 },
// Special cases for breaking group *before*
// CURRENTLY NOT SUPPORTED!
{ CALL, false, false, 0 },
{ JMPLCALL, false, false, 0 },
{ JMPLRET, false, false, 0 },
// Special cases for breaking the group *after*
{ MULX, true, true, (4+34)/2 },
{ FDIVS, false, true, 0 },
{ FDIVD, false, true, 0 },
{ FDIVQ, false, true, 0 },
{ FSQRTS, false, true, 0 },
{ FSQRTD, false, true, 0 },
{ FSQRTQ, false, true, 0 },
//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
// Instructions that introduce bubbles
//{ MULScc, true, true, 2 },
//{ SMULcc, true, true, (4+18)/2 },
//{ UMULcc, true, true, (4+19)/2 },
{ SDIVX, true, true, 68 },
{ UDIVX, true, true, 68 },
//{ SDIVcc, true, true, 36 },
//{ UDIVcc, true, true, 37 },
//{ WR, false, false, 4 },
//{ WRPR, false, false, 4 },
};
//---------------------------------------------------------------------------
// const InstrRUsageDelta SparcInstrUsageDeltas[]
//
// Purpose:
// Changes to resource usage information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
const InstrRUsageDelta SparcInstrUsageDeltas[] = {
// MachineOpCode, Resource, Start cycle, Num cycles
//
// JMPL counts as a load/store instruction for issue!
//
{ JMPLCALL, LSIssueSlots.rid, 0, 1 },
{ JMPLRET, LSIssueSlots.rid, 0, 1 },
//
// Many instructions cannot issue for the next 2 cycles after an FCMP
// We model that with a fake resource FCMPDelayCycle.
//
{ FCMPS, FCMPDelayCycle.rid, 1, 3 },
{ FCMPD, FCMPDelayCycle.rid, 1, 3 },
{ FCMPQ, FCMPDelayCycle.rid, 1, 3 },
{ MULX, FCMPDelayCycle.rid, 1, 1 },
{ SDIVX, FCMPDelayCycle.rid, 1, 1 },
{ UDIVX, FCMPDelayCycle.rid, 1, 1 },
//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
{ STD, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
//
// Some instructions are stalled in the GROUP stage if a CTI is in
// the E or C stage
//
{ LDD, CTIDelayCycle.rid, 1, 1 },
//{ LDDA, CTIDelayCycle.rid, 1, 1 },
//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
//{ SWAP, CTIDelayCycle.rid, 1, 1 },
//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
//{ CAS, CTIDelayCycle.rid, 1, 1 },
//{ CASA, CTIDelayCycle.rid, 1, 1 },
//{ CASX, CTIDelayCycle.rid, 1, 1 },
//{ CASXA, CTIDelayCycle.rid, 1, 1 },
//
// Signed int loads of less than dword size return data in cycle N1 (not C)
// and put all loads in consecutive cycles into delayed load return mode.
//
{ LDSB, LdReturn.rid, 2, -1 },
{ LDSB, LdReturn.rid, 3, 1 },
{ LDSH, LdReturn.rid, 2, -1 },
{ LDSH, LdReturn.rid, 3, 1 },
{ LDSW, LdReturn.rid, 2, -1 },
{ LDSW, LdReturn.rid, 3, 1 },
#undef EXPLICIT_BUBBLES_NEEDED
#ifdef EXPLICIT_BUBBLES_NEEDED
//
// MULScc inserts one bubble.
// This means it breaks the current group (captured in UltraSparcSchedInfo)
// *and occupies all issue slots for the next cycle
//
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//
// SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
// We just model this with a simple average.
//
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
// SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//
// MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
//
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
//
// SDIVcc inserts 36 bubbles.
//
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
// UDIVcc inserts 37 bubbles.
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//
// SDIVX inserts 68 bubbles.
//
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// UDIVX inserts 68 bubbles.
//
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// WR inserts 4 bubbles.
//
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//
// WRPR inserts 4 bubbles.
//
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//
// DONE inserts 9 bubbles.
//
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//
// RETRY inserts 9 bubbles.
//
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
#endif /*EXPLICIT_BUBBLES_NEEDED */
};
// Additional delays to be captured in code:
// 1. RDPR from several state registers (page 349)
// 2. RD from *any* register (page 349)
// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
// 4. Integer store can be in same group as instr producing value to store.
// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
// follow an annulling branch cannot be issued in the same group or in
// the 3 groups following the branch.
// 9. A predicted annulled load does not stall dependent instructions.
// Other annulled delay slot instructions *do* stall dependents, so
// nothing special needs to be done for them during scheduling.
//10. Do not put a load use that may be annulled in the same group as the
// branch. The group will stall until the load returns.
//11. Single-prec. FP loads lock 2 registers, for dependency checking.
//
//
// Additional delays we cannot or will not capture:
// 1. If DCTI is last word of cache line, it is delayed until next line can be
// fetched. Also, other DCTI alignment-related delays (pg 352)
// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
// Also, several other store-load and load-store conflicts (pg 358)
// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
// 4. There can be at most 8 outstanding buffered store instructions
// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
//
// Purpose:
// Interface to instruction scheduling information for UltraSPARC.
// The parameter values above are based on UltraSPARC IIi.
//---------------------------------------------------------------------------
class UltraSparcSchedInfo: public MachineSchedInfo {
public:
/*ctor*/ UltraSparcSchedInfo (const MachineInstrInfo* mii);
/*dtor*/ virtual ~UltraSparcSchedInfo () {}
protected:
virtual void initializeResources ();
};
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Purpose:
// Interface to stack frame layout info for the UltraSPARC.
// Note that there is no machine-independent interface to this information
//---------------------------------------------------------------------------
class UltraSparcFrameInfo: public NonCopyable {
public:
static const int MinStackFrameSize = 176;
static const int FirstOutgoingArgOffsetFromSP = 128;
static const int FirstOptionalOutgoingArgOffsetFromSP = 176;
static const int StaticStackAreaOffsetFromFP = -1;
static const int FirstIncomingArgOffsetFromFP = 126;
static int getFirstAutomaticVarOffsetFromFP (const Method* method);
static int getRegSpillAreaOffsetFromFP (const Method* method);
static int getFrameSizeBelowDynamicArea (const Method* method);
};
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as InstrInfo, SchedInfo and RegInfo.
//---------------------------------------------------------------------------
class UltraSparc : public TargetMachine {
private:
UltraSparcInstrInfo instrInfo;
UltraSparcSchedInfo schedInfo;
UltraSparcRegInfo regInfo;
UltraSparcFrameInfo frameInfo;
public:
UltraSparc();
virtual ~UltraSparc() {}
virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
const UltraSparcFrameInfo &getFrameInfo() const { return frameInfo; }
// compileMethod - For the sparc, we do instruction selection, followed by
// delay slot scheduling, then register allocation.
//
virtual bool compileMethod(Method *M);
//
// emitAssembly - Output assembly language code (a .s file) for the specified
// module. The specified module must have been compiled before this may be
// used.
//
virtual void emitAssembly(const Module *M, ostream &OutStr) const;
};
#endif