llvm-6502/lib/Transforms/Scalar/CondPropagate.cpp

214 lines
8.1 KiB
C++
Raw Normal View History

//===-- CondPropagate.cpp - Propagate Conditional Expressions -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass propagates information about conditional expressions through the
// program, allowing it to eliminate conditional branches in some cases.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "condprop"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include <iostream>
using namespace llvm;
namespace {
Statistic<>
NumBrThread("condprop", "Number of CFG edges threaded through branches");
Statistic<>
NumSwThread("condprop", "Number of CFG edges threaded through switches");
struct CondProp : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(BreakCriticalEdgesID);
//AU.addRequired<DominanceFrontier>();
}
private:
bool MadeChange;
void SimplifyBlock(BasicBlock *BB);
void SimplifyPredecessors(BranchInst *BI);
void SimplifyPredecessors(SwitchInst *SI);
void RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB);
};
RegisterOpt<CondProp> X("condprop", "Conditional Propagation");
}
FunctionPass *llvm::createCondPropagationPass() {
return new CondProp();
}
bool CondProp::runOnFunction(Function &F) {
bool EverMadeChange = false;
// While we are simplifying blocks, keep iterating.
do {
MadeChange = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
SimplifyBlock(BB);
EverMadeChange = MadeChange;
} while (MadeChange);
return EverMadeChange;
}
void CondProp::SimplifyBlock(BasicBlock *BB) {
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// If this is a conditional branch based on a phi node that is defined in
// this block, see if we can simplify predecessors of this block.
if (BI->isConditional() && isa<PHINode>(BI->getCondition()) &&
cast<PHINode>(BI->getCondition())->getParent() == BB)
SimplifyPredecessors(BI);
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
if (isa<PHINode>(SI->getCondition()) &&
cast<PHINode>(SI->getCondition())->getParent() == BB)
SimplifyPredecessors(SI);
}
// See if we can fold any PHI nodes in this block now.
// FIXME: This would not be required if removePredecessor did this for us!!
PHINode *PN;
for (BasicBlock::iterator I = BB->begin(); PN = dyn_cast<PHINode>(I++); )
if (Value *PNV = hasConstantValue(PN))
if (!isa<Instruction>(PNV)) {
PN->replaceAllUsesWith(PNV);
PN->eraseFromParent();
MadeChange = true;
}
// If possible, simplify the terminator of this block.
if (ConstantFoldTerminator(BB))
MadeChange = true;
// If this block ends with an unconditional branch and the only successor has
// only this block as a predecessor, merge the two blocks together.
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
if (BI->isUnconditional() && BI->getSuccessor(0)->getSinglePredecessor()) {
BasicBlock *Succ = BI->getSuccessor(0);
// Remove BI.
BI->eraseFromParent();
// Move over all of the instructions.
BB->getInstList().splice(BB->end(), Succ->getInstList());
// Any phi nodes that had entries for Succ now have entries from BB.
Succ->replaceAllUsesWith(BB);
// Succ is now dead, but we cannot delete it without potentially
// invalidating iterators elsewhere. Just insert an unreachable
// instruction in it.
new UnreachableInst(Succ);
MadeChange = true;
}
}
// SimplifyPredecessors(branches) - We know that BI is a conditional branch
// based on a PHI node defined in this block. If the phi node contains constant
// operands, then the blocks corresponding to those operands can be modified to
// jump directly to the destination instead of going through this block.
void CondProp::SimplifyPredecessors(BranchInst *BI) {
// TODO: We currently only handle the most trival case, where the PHI node has
// one use (the branch), and is the only instruction besides the branch in the
// block.
PHINode *PN = cast<PHINode>(BI->getCondition());
if (!PN->hasOneUse()) return;
BasicBlock *BB = BI->getParent();
if (&*BB->begin() != PN || &*next(BB->begin()) != BI)
return;
// Ok, we have this really simple case, walk the PHI operands, looking for
// constants. Walk from the end to remove operands from the end when
// possible, and to avoid invalidating "i".
for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
if (ConstantBool *CB = dyn_cast<ConstantBool>(PN->getIncomingValue(i-1))) {
// If we have a constant, forward the edge from its current to its
// ultimate destination.
bool PHIGone = PN->getNumIncomingValues() == 2;
RevectorBlockTo(PN->getIncomingBlock(i-1),
BI->getSuccessor(CB->getValue() == 0));
++NumBrThread;
// If there were two predecessors before this simplification, the PHI node
// will be deleted. Don't iterate through it the last time.
if (PHIGone) return;
}
}
// SimplifyPredecessors(switch) - We know that SI is switch based on a PHI node
// defined in this block. If the phi node contains constant operands, then the
// blocks corresponding to those operands can be modified to jump directly to
// the destination instead of going through this block.
void CondProp::SimplifyPredecessors(SwitchInst *SI) {
// TODO: We currently only handle the most trival case, where the PHI node has
// one use (the branch), and is the only instruction besides the branch in the
// block.
PHINode *PN = cast<PHINode>(SI->getCondition());
if (!PN->hasOneUse()) return;
BasicBlock *BB = SI->getParent();
if (&*BB->begin() != PN || &*next(BB->begin()) != SI)
return;
bool RemovedPreds = false;
// Ok, we have this really simple case, walk the PHI operands, looking for
// constants. Walk from the end to remove operands from the end when
// possible, and to avoid invalidating "i".
for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(PN->getIncomingValue(i-1))) {
// If we have a constant, forward the edge from its current to its
// ultimate destination.
bool PHIGone = PN->getNumIncomingValues() == 2;
unsigned DestCase = SI->findCaseValue(CI);
RevectorBlockTo(PN->getIncomingBlock(i-1),
SI->getSuccessor(DestCase));
++NumSwThread;
RemovedPreds = true;
// If there were two predecessors before this simplification, the PHI node
// will be deleted. Don't iterate through it the last time.
if (PHIGone) return;
}
}
// RevectorBlockTo - Revector the unconditional branch at the end of FromBB to
// the ToBB block, which is one of the successors of its current successor.
void CondProp::RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB) {
BranchInst *FromBr = cast<BranchInst>(FromBB->getTerminator());
assert(FromBr->isUnconditional() && "FromBB should end with uncond br!");
// Get the old block we are threading through.
BasicBlock *OldSucc = FromBr->getSuccessor(0);
// ToBB should not have any PHI nodes in it to update, because OldSucc had
// multiple successors. If OldSucc had multiple successor and ToBB had
// multiple predecessors, the edge between them would be critical, which we
// already took care of.
assert(!isa<PHINode>(ToBB->begin()) && "Critical Edge Found!");
// Update PHI nodes in OldSucc to know that FromBB no longer branches to it.
OldSucc->removePredecessor(FromBB);
// Change FromBr to branch to the new destination.
FromBr->setSuccessor(0, ToBB);
MadeChange = true;
}