llvm-6502/lib/Transforms/Scalar/InstructionCombining.cpp

189 lines
6.0 KiB
C++
Raw Normal View History

//===- InstructionCombining.cpp - Combine multiple instructions -------------=//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendancy to
// make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InstructionCombining.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/InstrTypes.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "../TransformInternals.h"
static Instruction *CombineBinOp(BinaryOperator *I) {
bool Changed = false;
// First thing we do is make sure that this instruction has a constant on the
// right hand side if it has any constant arguments.
//
if (isa<Constant>(I->getOperand(0)) && !isa<Constant>(I->getOperand(1)))
if (!I->swapOperands())
Changed = true;
bool LocalChange = true;
while (LocalChange) {
LocalChange = false;
Value *Op1 = I->getOperand(0);
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
switch (I->getOpcode()) {
case Instruction::Add:
if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(0)){
// Eliminate 'add int %X, 0'
I->replaceAllUsesWith(Op1); // FIXME: This breaks the worklist
Changed = true;
return I;
}
if (Instruction *IOp1 = dyn_cast<Instruction>(Op1)) {
if (IOp1->getOpcode() == Instruction::Add &&
isa<Constant>(IOp1->getOperand(1))) {
// Fold:
// %Y = add int %X, 1
// %Z = add int %Y, 1
// into:
// %Z = add int %X, 2
//
// Constant fold both constants...
Constant *Val = *Op2 + *cast<Constant>(IOp1->getOperand(1));
if (Val) {
I->setOperand(0, IOp1->getOperand(0));
I->setOperand(1, Val);
LocalChange = true;
break;
}
}
}
break;
case Instruction::Mul:
if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){
// Eliminate 'mul int %X, 1'
I->replaceAllUsesWith(Op1); // FIXME: This breaks the worklist
LocalChange = true;
break;
}
default:
break;
}
}
Changed |= LocalChange;
}
if (!Changed) return 0;
return I;
}
// Combine Indices - If the source pointer to this mem access instruction is a
// getelementptr instruction, combine the indices of the GEP into this
// instruction
//
static Instruction *CombineIndicies(MemAccessInst *MAI) {
GetElementPtrInst *Src =
dyn_cast<GetElementPtrInst>(MAI->getPointerOperand());
if (!Src) return 0;
std::vector<Value *> Indices;
// Only special case we have to watch out for is pointer arithmetic on the
// 0th index of MAI.
unsigned FirstIdx = MAI->getFirstIndexOperandNumber();
if (FirstIdx == MAI->getNumOperands() ||
(FirstIdx == MAI->getNumOperands()-1 &&
MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) {
// Replace the index list on this MAI with the index on the getelementptr
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
} else if (*MAI->idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
Indices.insert(Indices.end(), MAI->idx_begin()+1, MAI->idx_end());
}
if (Indices.empty()) return 0; // Can't do the fold?
switch (MAI->getOpcode()) {
case Instruction::GetElementPtr:
return new GetElementPtrInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Load:
return new LoadInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Store:
return new StoreInst(MAI->getOperand(0), Src->getOperand(0), Indices);
default:
assert(0 && "Unknown memaccessinst!");
break;
}
abort();
return 0;
}
static bool CombineInstruction(Instruction *I) {
Instruction *Result = 0;
if (BinaryOperator *BOP = dyn_cast<BinaryOperator>(I))
Result = CombineBinOp(BOP);
else if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(I))
Result = CombineIndicies(MAI);
else if (CastInst *CI = dyn_cast<CastInst>(I)) {
if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) {
CI->replaceAllUsesWith(CI->getOperand(0));
return true;
}
}
if (!Result) return false;
if (Result == I) return true;
// If we get to here, we are to replace I with Result.
ReplaceInstWithInst(I, Result);
return true;
}
static bool doInstCombining(Function *M) {
// Start the worklist out with all of the instructions in the function in it.
std::vector<Instruction*> WorkList(inst_begin(M), inst_end(M));
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction from the worklist
WorkList.pop_back();
// Now that we have an instruction, try combining it to simplify it...
if (CombineInstruction(I)) {
// The instruction was simplified, add all users of the instruction to
// the work lists because they might get more simplified now...
//
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
if (Instruction *User = dyn_cast<Instruction>(*UI))
WorkList.push_back(User);
}
}
return false;
}
namespace {
struct InstructionCombining : public MethodPass {
virtual bool runOnMethod(Function *F) { return doInstCombining(F); }
};
}
Pass *createInstructionCombiningPass() {
return new InstructionCombining();
}