194 lines
7.0 KiB
C
Raw Normal View History

//===- llvm/Analysis/Intervals.h - Interval partition Calculation-*- C++ -*--=//
//
// This file contains the declaration of the cfg::IntervalPartition class, which
// calculates and represents the interval partition of a method, or a
// preexisting interval partition.
//
// In this way, the interval partition may be used to reduce a flow graph down
// to its degenerate single node interval partition (unless it is irreducible).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INTERVALS_H
#define LLVM_INTERVALS_H
#include <vector>
#include <map>
#include <algorithm>
class Method;
class BasicBlock;
namespace cfg {
class IntervalPartition;
// Interval Class - An Interval is a set of nodes defined such that every node
// in the interval has all of its predecessors in the interval (except for the
// header)
class Interval {
friend class IntervalPartition;
public:
typedef vector<BasicBlock*>::iterator succ_iterator;
typedef vector<BasicBlock*>::iterator pred_iterator;
typedef vector<BasicBlock*>::iterator node_iterator;
// HeaderNode - The header BasicBlock, which dominates all BasicBlocks in this
// interval. Also, any loops in this interval must go through the HeaderNode.
//
BasicBlock *HeaderNode;
// Nodes - The basic blocks in this interval.
//
vector<BasicBlock*> Nodes;
// Successors - List of BasicBlocks that are reachable directly from nodes in
// this interval, but are not in the interval themselves.
// These nodes neccesarily must be header nodes for other intervals.
//
vector<BasicBlock*> Successors;
// Predecessors - List of BasicBlocks that have this Interval's header block
// as one of their successors.
//
vector<BasicBlock*> Predecessors;
// contains - Find out if a basic block is in this interval
inline bool contains(BasicBlock *BB) const {
return find(Nodes.begin(), Nodes.end(), BB) != Nodes.end();
}
// isSuccessor - find out if a basic block is a successor of this Interval
inline bool isSuccessor(BasicBlock *BB) const {
return find(Successors.begin(), Successors.end(), BB) != Successors.end();
}
// isLoop - Find out if there is a back edge in this interval...
bool isLoop() const;
private: // Only accessable by IntervalPartition class
inline Interval(BasicBlock *Header) : HeaderNode(Header) {
Nodes.push_back(Header);
}
};
// succ_begin/succ_end - define global functions so that Intervals may be used
// just like BasicBlocks can with the succ_* functions, and *::succ_iterator.
//
inline Interval::succ_iterator succ_begin(Interval *I) {
return I->Successors.begin();
}
inline Interval::succ_iterator succ_end(Interval *I) {
return I->Successors.end();
}
// pred_begin/pred_end - define global functions so that Intervals may be used
// just like BasicBlocks can with the pred_* functions, and *::pred_iterator.
//
inline Interval::pred_iterator pred_begin(Interval *I) {
return I->Predecessors.begin();
}
inline Interval::pred_iterator pred_end(Interval *I) {
return I->Predecessors.end();
}
// IntervalPartition - This class builds and holds an "interval partition" for
// a method. This partition divides the control flow graph into a set of
// maximal intervals, as defined with the properties above. Intuitively, a
// BasicBlock is a (possibly nonexistent) loop with a "tail" of non looping
// nodes following it.
//
class IntervalPartition {
typedef map<BasicBlock*, Interval*> IntervalMapTy;
IntervalMapTy IntervalMap;
typedef vector<Interval*> IntervalListTy;
IntervalListTy IntervalList;
Interval *RootInterval;
public:
typedef IntervalListTy::iterator iterator;
public:
// IntervalPartition ctor - Build the partition for the specified method
IntervalPartition(Method *M);
// IntervalPartition ctor - Build a reduced interval partition from an
// existing interval graph. This takes an additional boolean parameter to
// distinguish it from a copy constructor. Always pass in false for now.
//
IntervalPartition(IntervalPartition &I, bool);
// Destructor - Free memory
~IntervalPartition();
// getRootInterval() - Return the root interval that contains the starting
// block of the method.
inline Interval *getRootInterval() { return RootInterval; }
// isDegeneratePartition() - Returns true if the interval partition contains
// a single interval, and thus cannot be simplified anymore.
bool isDegeneratePartition() { return size() == 1; }
// TODO: isIrreducible - look for triangle graph.
// getBlockInterval - Return the interval that a basic block exists in.
inline Interval *getBlockInterval(BasicBlock *BB) {
IntervalMapTy::iterator I = IntervalMap.find(BB);
return I != IntervalMap.end() ? I->second : 0;
}
// Iterators to iterate over all of the intervals in the method
inline iterator begin() { return IntervalList.begin(); }
inline iterator end() { return IntervalList.end(); }
inline unsigned size() { return IntervalList.size(); }
private:
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invokation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void ProcessInterval(NodeTy *Node, OrigContainer *OC);
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void ProcessNode(Interval *Int, NodeTy *Node, OrigContainer *OC);
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void addNodeToInterval(Interval *Int, Interval *I);
inline void addNodeToInterval(Interval *Int, BasicBlock *BB);
// updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete,
// run through all of the intervals and propogate successor info as
// predecessor info.
//
void updatePredecessors(Interval *Int);
};
} // End namespace cfg
#endif