llvm-6502/lib/Analysis/AliasAnalysis.cpp

574 lines
21 KiB
C++
Raw Normal View History

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
// Register the AliasAnalysis interface, providing a nice name to refer to.
static RegisterAnalysisGroup<AliasAnalysis> Z("Alias Analysis");
char AliasAnalysis::ID = 0;
//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//
AliasAnalysis::AliasResult
AliasAnalysis::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->alias(V1, V1Size, V2, V2Size);
}
bool AliasAnalysis::pointsToConstantMemory(const Value *P) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->pointsToConstantMemory(P);
}
void AliasAnalysis::deleteValue(Value *V) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->deleteValue(V);
}
void AliasAnalysis::copyValue(Value *From, Value *To) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->copyValue(From, To);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const Value *P, unsigned Size) {
// Don't assert AA because BasicAA calls us in order to make use of the
// logic here.
ModRefBehavior MRB = getModRefBehavior(CS);
if (MRB == DoesNotAccessMemory)
return NoModRef;
ModRefResult Mask = ModRef;
if (MRB == OnlyReadsMemory)
Mask = Ref;
else if (MRB == AliasAnalysis::AccessesArguments) {
bool doesAlias = false;
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
AI != AE; ++AI)
if (!isNoAlias(*AI, ~0U, P, Size)) {
doesAlias = true;
break;
}
if (!doesAlias)
return NoModRef;
}
// If P points to a constant memory location, the call definitely could not
// modify the memory location.
if ((Mask & Mod) && pointsToConstantMemory(P))
Mask = ModRefResult(Mask & ~Mod);
// If this is BasicAA, don't forward.
if (!AA) return Mask;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS, P, Size) & Mask);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
// Don't assert AA because BasicAA calls us in order to make use of the
// logic here.
// If CS1 or CS2 are readnone, they don't interact.
ModRefBehavior CS1B = getModRefBehavior(CS1);
if (CS1B == DoesNotAccessMemory) return NoModRef;
ModRefBehavior CS2B = getModRefBehavior(CS2);
if (CS2B == DoesNotAccessMemory) return NoModRef;
// If they both only read from memory, there is no dependence.
if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
return NoModRef;
AliasAnalysis::ModRefResult Mask = ModRef;
// If CS1 only reads memory, the only dependence on CS2 can be
// from CS1 reading memory written by CS2.
if (CS1B == OnlyReadsMemory)
Mask = ModRefResult(Mask & Ref);
// If CS2 only access memory through arguments, accumulate the mod/ref
// information from CS1's references to the memory referenced by
// CS2's arguments.
if (CS2B == AccessesArguments) {
AliasAnalysis::ModRefResult R = NoModRef;
for (ImmutableCallSite::arg_iterator
I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask);
if (R == Mask)
break;
}
return R;
}
// If CS1 only accesses memory through arguments, check if CS2 references
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
if (CS1B == AccessesArguments) {
AliasAnalysis::ModRefResult R = NoModRef;
for (ImmutableCallSite::arg_iterator
I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I)
if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) {
R = Mask;
break;
}
if (R == NoModRef)
return R;
}
// If this is BasicAA, don't forward.
if (!AA) return Mask;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
// Don't assert AA because BasicAA calls us in order to make use of the
// logic here.
ModRefBehavior Min = UnknownModRefBehavior;
// Call back into the alias analysis with the other form of getModRefBehavior
// to see if it can give a better response.
if (const Function *F = CS.getCalledFunction())
Min = getModRefBehavior(F);
// If this is BasicAA, don't forward.
if (!AA) return Min;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any result we've managed to compute.
return std::min(AA->getModRefBehavior(CS), Min);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(const Function *F) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->getModRefBehavior(F);
}
AliasAnalysis::DependenceResult
AliasAnalysis::getDependence(const Instruction *First,
const Value *FirstPHITranslatedAddr,
DependenceQueryFlags FirstFlags,
const Instruction *Second,
const Value *SecondPHITranslatedAddr,
DependenceQueryFlags SecondFlags) {
assert(AA && "AA didn't call InitializeAliasAnalyais in its run method!");
return AA->getDependence(First, FirstPHITranslatedAddr, FirstFlags,
Second, SecondPHITranslatedAddr, SecondFlags);
}
//===----------------------------------------------------------------------===//
// AliasAnalysis non-virtual helper method implementation
//===----------------------------------------------------------------------===//
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const LoadInst *L, const Value *P, unsigned Size) {
// Be conservative in the face of volatile.
if (L->isVolatile())
return ModRef;
// If the load address doesn't alias the given address, it doesn't read
// or write the specified memory.
if (!alias(L->getOperand(0), getTypeStoreSize(L->getType()), P, Size))
return NoModRef;
// Otherwise, a load just reads.
return Ref;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const StoreInst *S, const Value *P, unsigned Size) {
// Be conservative in the face of volatile.
if (S->isVolatile())
return ModRef;
// If the store address cannot alias the pointer in question, then the
// specified memory cannot be modified by the store.
Executive summary: getTypeSize -> getTypeStoreSize / getABITypeSize. The meaning of getTypeSize was not clear - clarifying it is important now that we have x86 long double and arbitrary precision integers. The issue with long double is that it requires 80 bits, and this is not a multiple of its alignment. This gives a primitive type for which getTypeSize differed from getABITypeSize. For arbitrary precision integers it is even worse: there is the minimum number of bits needed to hold the type (eg: 36 for an i36), the maximum number of bits that will be overwriten when storing the type (40 bits for i36) and the ABI size (i.e. the storage size rounded up to a multiple of the alignment; 64 bits for i36). This patch removes getTypeSize (not really - it is still there but deprecated to allow for a gradual transition). Instead there is: (1) getTypeSizeInBits - a number of bits that suffices to hold all values of the type. For a primitive type, this is the minimum number of bits. For an i36 this is 36 bits. For x86 long double it is 80. This corresponds to gcc's TYPE_PRECISION. (2) getTypeStoreSizeInBits - the maximum number of bits that is written when storing the type (or read when reading it). For an i36 this is 40 bits, for an x86 long double it is 80 bits. This is the size alias analysis is interested in (getTypeStoreSize returns the number of bytes). There doesn't seem to be anything corresponding to this in gcc. (3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded up to a multiple of the alignment. For an i36 this is 64, for an x86 long double this is 96 or 128 depending on the OS. This is the spacing between consecutive elements when you form an array out of this type (getABITypeSize returns the number of bytes). This is TYPE_SIZE in gcc. Since successive elements in a SequentialType (arrays, pointers and vectors) need to be aligned, the spacing between them will be given by getABITypeSize. This means that the size of an array is the length times the getABITypeSize. It also means that GEP computations need to use getABITypeSize when computing offsets. Furthermore, if an alloca allocates several elements at once then these too need to be aligned, so the size of the alloca has to be the number of elements multiplied by getABITypeSize. Logically speaking this doesn't have to be the case when allocating just one element, but it is simpler to also use getABITypeSize in this case. So alloca's and mallocs should use getABITypeSize. Finally, since gcc's only notion of size is that given by getABITypeSize, if you want to output assembler etc the same as gcc then getABITypeSize is the size you want. Since a store will overwrite no more than getTypeStoreSize bytes, and a read will read no more than that many bytes, this is the notion of size appropriate for alias analysis calculations. In this patch I have corrected all type size uses except some of those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard cases). I will get around to auditing these too at some point, but I could do with some help. Finally, I made one change which I think wise but others might consider pointless and suboptimal: in an unpacked struct the amount of space allocated for a field is now given by the ABI size rather than getTypeStoreSize. I did this because every other place that reserves memory for a type (eg: alloca) now uses getABITypeSize, and I didn't want to make an exception for unpacked structs, i.e. I did it to make things more uniform. This only effects structs containing long doubles and arbitrary precision integers. If someone wants to pack these types more tightly they can always use a packed struct. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
2007-11-01 20:53:16 +00:00
if (!alias(S->getOperand(1),
getTypeStoreSize(S->getOperand(0)->getType()), P, Size))
return NoModRef;
// If the pointer is a pointer to constant memory, then it could not have been
// modified by this store.
if (pointsToConstantMemory(P))
return NoModRef;
// Otherwise, a store just writes.
return Mod;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const VAArgInst *V, const Value *P, unsigned Size) {
// If the va_arg address cannot alias the pointer in question, then the
// specified memory cannot be accessed by the va_arg.
if (!alias(V->getOperand(0), UnknownSize, P, Size))
return NoModRef;
// If the pointer is a pointer to constant memory, then it could not have been
// modified by this va_arg.
if (pointsToConstantMemory(P))
return NoModRef;
// Otherwise, a va_arg reads and writes.
return ModRef;
}
AliasAnalysis::DependenceResult
AliasAnalysis::getDependenceViaModRefInfo(const Instruction *First,
const Value *FirstPHITranslatedAddr,
DependenceQueryFlags FirstFlags,
const Instruction *Second,
const Value *SecondPHITranslatedAddr,
DependenceQueryFlags SecondFlags) {
if (const LoadInst *L = dyn_cast<LoadInst>(First)) {
// Be over-conservative with volatile for now.
if (L->isVolatile())
return Unknown;
// If we don't have a phi-translated address, use the actual one.
if (!FirstPHITranslatedAddr)
FirstPHITranslatedAddr = L->getPointerOperand();
// Forward this query to getModRefInfo.
switch (getModRefInfo(Second,
FirstPHITranslatedAddr,
getTypeStoreSize(L->getType()))) {
case NoModRef:
// Second doesn't reference First's memory, so they're independent.
return Independent;
case Ref:
// Second only reads from the memory read from by First. If it
// also writes to any other memory, be conservative.
if (Second->mayWriteToMemory())
return Unknown;
// If it's loading the same size from the same address, we can
// give a more precise result.
if (const LoadInst *SecondL = dyn_cast<LoadInst>(Second)) {
// If we don't have a phi-translated address, use the actual one.
if (!SecondPHITranslatedAddr)
SecondPHITranslatedAddr = SecondL->getPointerOperand();
unsigned LSize = getTypeStoreSize(L->getType());
unsigned SecondLSize = getTypeStoreSize(SecondL->getType());
if (alias(FirstPHITranslatedAddr, LSize,
SecondPHITranslatedAddr, SecondLSize) ==
MustAlias) {
// If the loads are the same size, it's ReadThenRead.
if (LSize == SecondLSize)
return ReadThenRead;
// If the second load is smaller, it's only ReadThenReadSome.
if (LSize > SecondLSize)
return ReadThenReadSome;
}
}
// Otherwise it's just two loads.
return Independent;
case Mod:
// Second only writes to the memory read from by First. If it
// also reads from any other memory, be conservative.
if (Second->mayReadFromMemory())
return Unknown;
// If it's storing the same size to the same address, we can
// give a more precise result.
if (const StoreInst *SecondS = dyn_cast<StoreInst>(Second)) {
// If we don't have a phi-translated address, use the actual one.
if (!SecondPHITranslatedAddr)
SecondPHITranslatedAddr = SecondS->getPointerOperand();
unsigned LSize = getTypeStoreSize(L->getType());
unsigned SecondSSize = getTypeStoreSize(SecondS->getType());
if (alias(FirstPHITranslatedAddr, LSize,
SecondPHITranslatedAddr, SecondSSize) ==
MustAlias) {
// If the load and the store are the same size, it's ReadThenWrite.
if (LSize == SecondSSize)
return ReadThenWrite;
}
}
// Otherwise we don't know if it could be writing to other memory.
return Unknown;
case ModRef:
// Second reads and writes to the memory read from by First.
// We don't have a way to express that.
return Unknown;
}
} else if (const StoreInst *S = dyn_cast<StoreInst>(First)) {
// Be over-conservative with volatile for now.
if (S->isVolatile())
return Unknown;
// If we don't have a phi-translated address, use the actual one.
if (!FirstPHITranslatedAddr)
FirstPHITranslatedAddr = S->getPointerOperand();
// Forward this query to getModRefInfo.
switch (getModRefInfo(Second,
FirstPHITranslatedAddr,
getTypeStoreSize(S->getValueOperand()->getType()))) {
case NoModRef:
// Second doesn't reference First's memory, so they're independent.
return Independent;
case Ref:
// Second only reads from the memory written to by First. If it
// also writes to any other memory, be conservative.
if (Second->mayWriteToMemory())
return Unknown;
// If it's loading the same size from the same address, we can
// give a more precise result.
if (const LoadInst *SecondL = dyn_cast<LoadInst>(Second)) {
// If we don't have a phi-translated address, use the actual one.
if (!SecondPHITranslatedAddr)
SecondPHITranslatedAddr = SecondL->getPointerOperand();
unsigned SSize = getTypeStoreSize(S->getValueOperand()->getType());
unsigned SecondLSize = getTypeStoreSize(SecondL->getType());
if (alias(FirstPHITranslatedAddr, SSize,
SecondPHITranslatedAddr, SecondLSize) ==
MustAlias) {
// If the store and the load are the same size, it's WriteThenRead.
if (SSize == SecondLSize)
return WriteThenRead;
// If the load is smaller, it's only WriteThenReadSome.
if (SSize > SecondLSize)
return WriteThenReadSome;
}
}
// Otherwise we don't know if it could be reading from other memory.
return Unknown;
case Mod:
// Second only writes to the memory written to by First. If it
// also reads from any other memory, be conservative.
if (Second->mayReadFromMemory())
return Unknown;
// If it's storing the same size to the same address, we can
// give a more precise result.
if (const StoreInst *SecondS = dyn_cast<StoreInst>(Second)) {
// If we don't have a phi-translated address, use the actual one.
if (!SecondPHITranslatedAddr)
SecondPHITranslatedAddr = SecondS->getPointerOperand();
unsigned SSize = getTypeStoreSize(S->getValueOperand()->getType());
unsigned SecondSSize = getTypeStoreSize(SecondS->getType());
if (alias(FirstPHITranslatedAddr, SSize,
SecondPHITranslatedAddr, SecondSSize) ==
MustAlias) {
// If the stores are the same size, it's WriteThenWrite.
if (SSize == SecondSSize)
return WriteThenWrite;
// If the second store is larger, it's only WriteSomeThenWrite.
if (SSize < SecondSSize)
return WriteSomeThenWrite;
}
}
// Otherwise we don't know if it could be writing to other memory.
return Unknown;
case ModRef:
// Second reads and writes to the memory written to by First.
// We don't have a way to express that.
return Unknown;
}
} else if (const VAArgInst *V = dyn_cast<VAArgInst>(First)) {
// If we don't have a phi-translated address, use the actual one.
if (!FirstPHITranslatedAddr)
FirstPHITranslatedAddr = V->getPointerOperand();
// Forward this query to getModRefInfo.
if (getModRefInfo(Second, FirstPHITranslatedAddr, UnknownSize) == NoModRef)
// Second doesn't reference First's memory, so they're independent.
return Independent;
} else if (ImmutableCallSite FirstCS = cast<Value>(First)) {
assert(!FirstPHITranslatedAddr &&
!SecondPHITranslatedAddr &&
"PHI translation with calls not supported yet!");
// If both instructions are calls/invokes we can use the two-callsite
// form of getModRefInfo.
if (ImmutableCallSite SecondCS = cast<Value>(Second))
// getModRefInfo's arguments are backwards from intuition.
switch (getModRefInfo(SecondCS, FirstCS)) {
case NoModRef:
// Second doesn't reference First's memory, so they're independent.
return Independent;
case Ref:
// If they're both read-only, there's no dependence.
if (FirstCS.onlyReadsMemory() && SecondCS.onlyReadsMemory())
return Independent;
// Otherwise it's not obvious what we can do here.
return Unknown;
case Mod:
// It's not obvious what we can do here.
return Unknown;
case ModRef:
// I know, right?
return Unknown;
}
}
// For anything else, be conservative.
return Unknown;
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getIntrinsicModRefBehavior(unsigned iid) {
#define GET_INTRINSIC_MODREF_BEHAVIOR
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_MODREF_BEHAVIOR
}
// AliasAnalysis destructor: DO NOT move this to the header file for
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
// the AliasAnalysis.o file in the current .a file, causing alias analysis
// support to not be included in the tool correctly!
//
AliasAnalysis::~AliasAnalysis() {}
/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
TD = P->getAnalysisIfAvailable<TargetData>();
AA = &P->getAnalysis<AliasAnalysis>();
}
// getAnalysisUsage - All alias analysis implementations should invoke this
// directly (using AliasAnalysis::getAnalysisUsage(AU)).
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>(); // All AA's chain
}
/// getTypeStoreSize - Return the TargetData store size for the given type,
/// if known, or a conservative value otherwise.
///
unsigned AliasAnalysis::getTypeStoreSize(const Type *Ty) {
return TD ? TD->getTypeStoreSize(Ty) : ~0u;
}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
const Value *Ptr, unsigned Size) {
return canInstructionRangeModify(BB.front(), BB.back(), Ptr, Size);
}
/// canInstructionRangeModify - Return true if it is possible for the execution
/// of the specified instructions to modify the value pointed to by Ptr. The
/// instructions to consider are all of the instructions in the range of [I1,I2]
/// INCLUSIVE. I1 and I2 must be in the same basic block.
///
bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
const Instruction &I2,
const Value *Ptr, unsigned Size) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = &I1;
BasicBlock::const_iterator E = &I2;
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I) // Check every instruction in range
if (getModRefInfo(I, Ptr, Size) & Mod)
return true;
return false;
}
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool llvm::isNoAliasCall(const Value *V) {
if (isa<CallInst>(V) || isa<InvokeInst>(V))
return ImmutableCallSite(cast<Instruction>(V))
.paramHasAttr(0, Attribute::NoAlias);
return false;
}
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas and Mallocs
/// ByVal and NoAlias Arguments
/// NoAlias returns
///
bool llvm::isIdentifiedObject(const Value *V) {
if (isa<AllocaInst>(V))
return true;
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
return true;
if (isNoAliasCall(V))
return true;
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr() || A->hasByValAttr();
return false;
}
// Because of the way .a files work, we must force the BasicAA implementation to
// be pulled in if the AliasAnalysis classes are pulled in. Otherwise we run
// the risk of AliasAnalysis being used, but the default implementation not
// being linked into the tool that uses it.
DEFINING_FILE_FOR(AliasAnalysis)