Implemented the bulk of the functionality. Cleaned up the code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14113 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2004-06-10 08:09:13 +00:00
parent 43f38677f5
commit 00c28a7481
13 changed files with 1200 additions and 806 deletions

View File

@ -19,6 +19,7 @@
#ifndef LLVM_BYTECODE_ANALYZER_H
#define LLVM_BYTECODE_ANALYZER_H
#include "llvm/Bytecode/Format.h"
#include <string>
#include <map>
@ -33,6 +34,7 @@ struct BytecodeAnalysis {
unsigned byteSize; ///< The size of the bytecode file in bytes
unsigned numTypes; ///< The number of types
unsigned numValues; ///< The number of values
unsigned numBlocks; ///< The number of *bytecode* blocks
unsigned numFunctions; ///< The number of functions defined
unsigned numConstants; ///< The number of constants
unsigned numGlobalVars; ///< The number of global variables
@ -41,29 +43,40 @@ struct BytecodeAnalysis {
unsigned numOperands; ///< The number of BBs in all functions
unsigned numCmpctnTables; ///< The number of compaction tables
unsigned numSymTab; ///< The number of symbol tables
unsigned numAlignment; ///< The number of alignment bytes
unsigned maxTypeSlot; ///< The maximum slot number for types
unsigned maxValueSlot; ///< The maximum slot number for values
double density; ///< Density of file (bytes/defs)
double fileDensity; ///< Density of file (bytes/definition)
///< This is the density of the bytecode file. It is the ratio of
///< the number of bytes to the number of definitions in the file. Smaller
///< numbers mean the file is more compact (denser). Larger numbers mean
///< the file is more sparse.
double globalsDensity; ///< density of global defs (bytes/definition)
double functionDensity; ///< Average density of functions (bytes/function)
unsigned vbrCount32; ///< Number of 32-bit vbr values
unsigned vbrCount64; ///< Number of 64-bit vbr values
unsigned vbrCompBytes; ///< Number of vbr bytes (compressed)
unsigned vbrExpdBytes; ///< Number of vbr bytes (expanded)
typedef std::map<BytecodeFormat::FileBlockIDs,unsigned> BlockSizeMap;
BlockSizeMap BlockSizes;
/// A structure that contains various pieces of information related to
/// an analysis of a single function.
struct BytecodeFunctionInfo {
std::string description; ///< Function type description
std::string name; ///< Name of function if it has one
unsigned byteSize; ///< The size of the function in bytecode bytes
unsigned numInstructions; ///< The number of instructions in the function
unsigned numBasicBlocks; ///< The number of basic blocks in the function
unsigned numOperands; ///< The number of operands in the function
double density; ///< Density of function
double vbrEffectiveness; ///< Effectiveness of variable bit rate encoding.
///< This is the average number of bytes per unsigned value written in the
///< vbr encoding. A "perfect" score of 1.0 means all vbr values were
///< encoded in one byte. A score between 1.0 and 4.0 means that some
///< savings were achieved. A score of 4.0 means vbr didn't help. A score
///< greater than 4.0 means vbr negatively impacted size of the file.
};
/// A mapping of function names to the collected information about the
/// function.
std::map<std::string,BytecodeFunctionInfo> FunctionInfo;
/// A mapping of function slot numbers to the collected information about
/// the function.
std::map<unsigned,BytecodeFunctionInfo> FunctionInfo;
/// The content of the bytecode dump
std::string BytecodeDump;

View File

@ -30,13 +30,13 @@ public:
bool handleError(const std::string& str )
{
std::cerr << "Analysis Error: " << str;
return false;
}
void handleStart()
{
bca.ModuleId.clear();
bca.numBlocks = 0;
bca.numTypes = 0;
bca.numValues = 0;
bca.numFunctions = 0;
@ -49,16 +49,38 @@ public:
bca.numSymTab = 0;
bca.maxTypeSlot = 0;
bca.maxValueSlot = 0;
bca.density = 0.0;
bca.numAlignment = 0;
bca.fileDensity = 0.0;
bca.globalsDensity = 0.0;
bca.functionDensity = 0.0;
bca.vbrCount32 = 0;
bca.vbrCount64 = 0;
bca.vbrCompBytes = 0;
bca.vbrExpdBytes = 0;
bca.FunctionInfo.clear();
bca.BytecodeDump.clear();
bca.BlockSizes[BytecodeFormat::Module] = 0;
bca.BlockSizes[BytecodeFormat::Function] = 0;
bca.BlockSizes[BytecodeFormat::ConstantPool] = 0;
bca.BlockSizes[BytecodeFormat::SymbolTable] = 0;
bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo] = 0;
bca.BlockSizes[BytecodeFormat::GlobalTypePlane] = 0;
bca.BlockSizes[BytecodeFormat::BasicBlock] = 0;
bca.BlockSizes[BytecodeFormat::InstructionList] = 0;
bca.BlockSizes[BytecodeFormat::CompactionTable] = 0;
}
void handleFinish()
{
bca.density = bca.numTypes + bca.numFunctions + bca.numConstants +
bca.numGlobalVars + bca.numInstructions;
bca.density /= bca.byteSize;
bca.fileDensity = double(bca.byteSize) / double( bca.numTypes + bca.numValues );
double globalSize = 0.0;
globalSize += double(bca.BlockSizes[BytecodeFormat::ConstantPool]);
globalSize += double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]);
globalSize += double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]);
bca.globalsDensity = globalSize / double( bca.numTypes + bca.numConstants +
bca.numGlobalVars );
bca.functionDensity = double(bca.BlockSizes[BytecodeFormat::Function]) /
double(bca.numFunctions);
}
void handleModuleBegin(const std::string& id)
@ -78,8 +100,9 @@ public:
{
}
void handleModuleGlobalsBegin()
void handleModuleGlobalsBegin(unsigned size)
{
// bca.globalBytesize += size;
}
void handleGlobalVariable(
@ -89,6 +112,7 @@ public:
)
{
bca.numGlobalVars++;
bca.numValues++;
}
void handleInitializedGV(
@ -99,6 +123,7 @@ public:
)
{
bca.numGlobalVars++;
bca.numValues++;
}
virtual void handleType( const Type* Ty )
@ -111,6 +136,7 @@ public:
)
{
bca.numFunctions++;
bca.numValues++;
}
void handleModuleGlobalsEnd()
@ -200,15 +226,19 @@ public:
)
{
bca.numBasicBlocks++;
bca.numValues++;
}
bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Size
)
{
bca.numInstructions++;
bca.numValues++;
bca.numOperands += Operands.size();
return Instruction::isTerminator(Opcode);
}
@ -227,43 +257,67 @@ public:
)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantValue( Constant * c )
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantArray(
const ArrayType* AT,
std::vector<unsigned>& Elements )
const ArrayType* AT,
std::vector<unsigned>& Elements )
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantStruct(
const StructType* ST,
std::vector<unsigned>& ElementSlots)
const StructType* ST,
std::vector<unsigned>& ElementSlots)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantPointer(
const PointerType* PT, unsigned Slot)
const PointerType* PT, unsigned Slot)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantString( const ConstantArray* CA )
{
bca.numConstants++;
bca.numValues++;
}
void handleGlobalConstantsEnd()
{
void handleGlobalConstantsEnd() { }
void handleAlignment(unsigned numBytes) {
bca.numAlignment += numBytes;
}
void handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {
bca.numBlocks++;
bca.BlockSizes[llvm::BytecodeFormat::FileBlockIDs(BType)] += Size;
}
virtual void handleVBR32(unsigned Size ) {
bca.vbrCount32++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint32_t);
}
virtual void handleVBR64(unsigned Size ) {
bca.vbrCount64++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint64_t);
}
};
}
@ -277,10 +331,9 @@ void llvm::BytecodeAnalyzer::AnalyzeBytecode(
{
bca.byteSize = Length;
AnalyzerHandler TheHandler(bca);
AbstractBytecodeParser TheParser(&TheHandler);
AbstractBytecodeParser TheParser(&TheHandler, true, true, true);
TheParser.ParseBytecode( Buf, Length, ModuleID );
if ( bca.detailedResults )
TheParser.ParseAllFunctionBodies();
TheParser.ParseAllFunctionBodies();
}
// vim: sw=2

View File

@ -18,6 +18,7 @@
#include "Support/StringExtras.h"
#include "Config/unistd.h"
#include <cerrno>
#include <iomanip>
using namespace llvm;
@ -46,7 +47,7 @@ static std::string ErrnoMessage (int savedErrNum, std::string descr) {
}
BytecodeFileAnalyzer::BytecodeFileAnalyzer(const std::string &Filename,
BytecodeAnalysis& bca) {
BytecodeAnalysis& bca) {
Buffer = (unsigned char*)ReadFileIntoAddressSpace(Filename, Length);
if (Buffer == 0)
throw "Error reading file '" + Filename + "'.";
@ -84,16 +85,16 @@ namespace {
public:
BytecodeBufferAnalyzer(const unsigned char *Buf, unsigned Length,
BytecodeAnalysis& bca, const std::string &ModuleID);
BytecodeAnalysis& bca, const std::string &ModuleID);
~BytecodeBufferAnalyzer();
};
}
BytecodeBufferAnalyzer::BytecodeBufferAnalyzer(const unsigned char *Buf,
unsigned Length,
BytecodeAnalysis& bca,
const std::string &ModuleID) {
unsigned Length,
BytecodeAnalysis& bca,
const std::string &ModuleID) {
// If not aligned, allocate a new buffer to hold the bytecode...
const unsigned char *ParseBegin = 0;
if ((intptr_t)Buf & 3) {
@ -200,28 +201,118 @@ void llvm::AnalyzeBytecodeBuffer(
/// This function prints the contents of rhe BytecodeAnalysis structure in
/// a human legible form.
/// @brief Print BytecodeAnalysis structure to an ostream
namespace {
inline static void print(std::ostream& Out, const char*title,
unsigned val, bool nl = true ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << val << "\n";
}
inline static void print(std::ostream&Out, const char*title,
double val ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << val << "\n" ;
}
inline static void print(std::ostream&Out, const char*title,
double top, double bot ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << top
<< " (" << std::left << std::setw(0) << std::setprecision(4)
<< (top/bot)*100.0 << "%)\n";
}
inline static void print(std::ostream&Out, const char*title,
std::string val, bool nl = true) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::left << val << (nl ? "\n" : "");
}
}
void llvm::PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
{
Out << " Bytecode Analysis of: " << bca.ModuleId << "\n";
Out << " File Size: " << bca.byteSize << "\n";
Out << " Number Of Types: " << bca.numTypes << "\n";
Out << " Number Of Constants: " << bca.numConstants << "\n";
Out << " Number Of Global Variables: " << bca.numGlobalVars << "\n";
Out << " Number Of Functions: " << bca.numFunctions << "\n";
Out << " Number Of Basic Blocks: " << bca.numBasicBlocks << "\n";
Out << " Number Of Instructions: " << bca.numInstructions << "\n";
Out << " Number Of Operands: " << bca.numOperands << "\n";
Out << "Number Of Compaction Tables: " << bca.numCmpctnTables << "\n";
Out << " Number Of Symbol Tables: " << bca.numSymTab << "\n";
Out << " Maximum Type Slot Number: " << bca.maxTypeSlot << "\n";
Out << " Maximum Value Slot Number: " << bca.maxValueSlot << "\n";
Out << " Bytecode Density: " << bca.density << "\n";
print(Out, "Bytecode Analysis Of Module", bca.ModuleId);
print(Out, "File Size", bca.byteSize);
print(Out, "Bytecode Compression Index",std::string("TBD"));
print(Out, "Number Of Bytecode Blocks", bca.numBlocks);
print(Out, "Number Of Types", bca.numTypes);
print(Out, "Number Of Values", bca.numValues);
print(Out, "Number Of Constants", bca.numConstants);
print(Out, "Number Of Global Variables", bca.numGlobalVars);
print(Out, "Number Of Functions", bca.numFunctions);
print(Out, "Number Of Basic Blocks", bca.numBasicBlocks);
print(Out, "Number Of Instructions", bca.numInstructions);
print(Out, "Number Of Operands", bca.numOperands);
print(Out, "Number Of Compaction Tables", bca.numCmpctnTables);
print(Out, "Number Of Symbol Tables", bca.numSymTab);
print(Out, "Maximum Type Slot Number", bca.maxTypeSlot);
print(Out, "Maximum Value Slot Number", bca.maxValueSlot);
print(Out, "Bytes Thrown To Alignment", double(bca.numAlignment),
double(bca.byteSize));
print(Out, "File Density (bytes/def)", bca.fileDensity);
print(Out, "Globals Density (bytes/def)", bca.globalsDensity);
print(Out, "Function Density (bytes/func)", bca.functionDensity);
print(Out, "Number of VBR 32-bit Integers", bca.vbrCount32);
print(Out, "Number of VBR 64-bit Integers", bca.vbrCount64);
print(Out, "Number of VBR Compressed Bytes", bca.vbrCompBytes);
print(Out, "Number of VBR Expanded Bytes", bca.vbrExpdBytes);
print(Out, "VBR Savings",
double(bca.vbrExpdBytes)-double(bca.vbrCompBytes),
double(bca.byteSize));
if ( bca.detailedResults )
Out << "Detailed Results Not Implemented Yet.\n";
if ( bca.detailedResults ) {
print(Out, "Module Bytes",
double(bca.BlockSizes[BytecodeFormat::Module]),
double(bca.byteSize));
print(Out, "Function Bytes",
double(bca.BlockSizes[BytecodeFormat::Function]),
double(bca.byteSize));
print(Out, "Constant Pool Bytes",
double(bca.BlockSizes[BytecodeFormat::ConstantPool]),
double(bca.byteSize));
print(Out, "Symbol Table Bytes",
double(bca.BlockSizes[BytecodeFormat::SymbolTable]),
double(bca.byteSize));
print(Out, "Module Global Info Bytes",
double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]),
double(bca.byteSize));
print(Out, "Global Type Plane Bytes",
double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]),
double(bca.byteSize));
print(Out, "Basic Block Bytes",
double(bca.BlockSizes[BytecodeFormat::BasicBlock]),
double(bca.byteSize));
print(Out, "Instruction List Bytes",
double(bca.BlockSizes[BytecodeFormat::InstructionList]),
double(bca.byteSize));
print(Out, "Compaction Table Bytes",
double(bca.BlockSizes[BytecodeFormat::CompactionTable]),
double(bca.byteSize));
std::map<unsigned,BytecodeAnalysis::BytecodeFunctionInfo>::iterator I =
bca.FunctionInfo.begin();
std::map<unsigned,BytecodeAnalysis::BytecodeFunctionInfo>::iterator E =
bca.FunctionInfo.end();
while ( I != E ) {
Out << std::left << std::setw(0);
Out << "Function: " << I->second.name << " Slot=" << I->first << "\n";
print(Out,"Type:", I->second.description);
print(Out,"Byte Size", I->second.byteSize);
print(Out,"Instructions", I->second.numInstructions);
print(Out,"Basic Blocks", I->second.numBasicBlocks);
print(Out,"Operand", I->second.numOperands);
print(Out,"Function Density", I->second.density);
print(Out,"VBR Effectiveness", I->second.vbrEffectiveness);
++I;
}
}
if ( bca.dumpBytecode )
Out << bca.BytecodeDump;
}
// vim: sw=2

View File

@ -1,220 +0,0 @@
//===-- BytecodeHandler.cpp - Parsing Handler -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines the BytecodeHandler class that gets called by the
// AbstractBytecodeParser when parsing events occur.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
using namespace llvm;
bool BytecodeHandler::handleError(const std::string& str )
{
return false;
}
void BytecodeHandler::handleStart()
{
}
void BytecodeHandler::handleFinish()
{
}
void BytecodeHandler::handleModuleBegin(const std::string& id)
{
}
void BytecodeHandler::handleModuleEnd(const std::string& id)
{
}
void BytecodeHandler::handleVersionInfo(
unsigned char RevisionNum, ///< Byte code revision number
Module::Endianness Endianness, ///< Endianness indicator
Module::PointerSize PointerSize ///< PointerSize indicator
)
{
}
void BytecodeHandler::handleModuleGlobalsBegin()
{
}
void BytecodeHandler::handleGlobalVariable(
const Type* ElemType, ///< The type of the global variable
bool isConstant, ///< Whether the GV is constant or not
GlobalValue::LinkageTypes ///< The linkage type of the GV
)
{
}
void BytecodeHandler::handleInitializedGV(
const Type* ElemType, ///< The type of the global variable
bool isConstant, ///< Whether the GV is constant or not
GlobalValue::LinkageTypes,///< The linkage type of the GV
unsigned initSlot ///< Slot number of GV's initializer
)
{
}
void BytecodeHandler::handleType( const Type* Ty )
{
}
void BytecodeHandler::handleFunctionDeclaration(
const Type* FuncType ///< The type of the function
)
{
}
void BytecodeHandler::handleModuleGlobalsEnd()
{
}
void BytecodeHandler::handleCompactionTableBegin()
{
}
void BytecodeHandler::handleCompactionTablePlane(
unsigned Ty,
unsigned NumEntries
)
{
}
void BytecodeHandler::handleCompactionTableType(
unsigned i,
unsigned TypSlot,
const Type*
)
{
}
void BytecodeHandler::handleCompactionTableValue(
unsigned i,
unsigned ValSlot,
const Type*
)
{
}
void BytecodeHandler::handleCompactionTableEnd()
{
}
void BytecodeHandler::handleSymbolTableBegin()
{
}
void BytecodeHandler::handleSymbolTablePlane(
unsigned Ty,
unsigned NumEntries,
const Type* Typ
)
{
}
void BytecodeHandler::handleSymbolTableType(
unsigned i,
unsigned slot,
const std::string& name
)
{
}
void BytecodeHandler::handleSymbolTableValue(
unsigned i,
unsigned slot,
const std::string& name
)
{
}
void BytecodeHandler::handleSymbolTableEnd()
{
}
void BytecodeHandler::handleFunctionBegin(
const Type* FType,
GlobalValue::LinkageTypes linkage
)
{
}
void BytecodeHandler::handleFunctionEnd(
const Type* FType
)
{
}
void BytecodeHandler::handleBasicBlockBegin(
unsigned blocknum
)
{
}
bool BytecodeHandler::handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
)
{
return false;
}
void BytecodeHandler::handleBasicBlockEnd(unsigned blocknum)
{
}
void BytecodeHandler::handleGlobalConstantsBegin()
{
}
void BytecodeHandler::handleConstantExpression(
unsigned Opcode,
const Type* Typ,
std::vector<std::pair<const Type*,unsigned> > ArgVec
)
{
}
void BytecodeHandler::handleConstantValue( Constant * c )
{
}
void BytecodeHandler::handleConstantArray(
const ArrayType* AT,
std::vector<unsigned>& Elements )
{
}
void BytecodeHandler::handleConstantStruct(
const StructType* ST,
std::vector<unsigned>& ElementSlots)
{
}
void BytecodeHandler::handleConstantPointer(
const PointerType* PT, unsigned Slot)
{
}
void BytecodeHandler::handleConstantString( const ConstantArray* CA )
{
}
void BytecodeHandler::handleGlobalConstantsEnd()
{
}
// vim: sw=2

View File

@ -212,7 +212,8 @@ public:
virtual bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Size
)
{
std::cout << " INST: OpCode="

View File

@ -1,4 +1,4 @@
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//===- Parser.cpp - Code to parse bytecode files --------------------------===//
//
// The LLVM Compiler Infrastructure
//
@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
// This library implements the functionality defined in llvm/Bytecode/Parser.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
@ -17,7 +17,6 @@
//===----------------------------------------------------------------------===//
#include "AnalyzerInternals.h"
#include "ReaderPrimitives.h"
#include "llvm/Module.h"
#include "llvm/Bytecode/Format.h"
#include "Support/StringExtras.h"
@ -37,40 +36,128 @@ using namespace llvm;
#define BCR_TRACE(n, X)
#endif
#define PARSE_ERROR(inserters) \
{ \
#define PARSE_ERROR(inserters) { \
std::ostringstream errormsg; \
errormsg << inserters; \
if ( ! handler->handleError( errormsg.str() ) ) \
throw std::string(errormsg.str()); \
}
inline bool AbstractBytecodeParser::moreInBlock() {
return At < BlockEnd;
}
inline void AbstractBytecodeParser::readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size)
{
Type = read(Buf, EndBuf);
Size = read(Buf, EndBuf);
inline void AbstractBytecodeParser::checkPastBlockEnd(const char * block_name) {
if ( At > BlockEnd )
PARSE_ERROR("Attempt to read past the end of " << block_name << " block.");
}
inline void AbstractBytecodeParser::align32() {
BufPtr Save = At;
At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
if ( reportAlignment && At > Save ) handler->handleAlignment( At - Save );
if (At > BlockEnd)
throw std::string("Ran out of data while aligning!");
}
inline unsigned AbstractBytecodeParser::read_uint() {
if (At+4 > BlockEnd)
throw std::string("Ran out of data reading uint!");
At += 4;
return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
}
inline unsigned AbstractBytecodeParser::read_vbr_uint() {
unsigned Shift = 0;
unsigned Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint!");
Result |= (unsigned)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR32(At-Save);
return Result;
}
inline uint64_t AbstractBytecodeParser::read_vbr_uint64() {
unsigned Shift = 0;
uint64_t Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint64!");
Result |= (uint64_t)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR64(At-Save);
return Result;
}
inline int64_t AbstractBytecodeParser::read_vbr_int64() {
uint64_t R = read_vbr_uint64();
if (R & 1) {
if (R != 1)
return -(int64_t)(R >> 1);
else // There is no such thing as -0 with integers. "-0" really means
// 0x8000000000000000.
return 1LL << 63;
} else
return (int64_t)(R >> 1);
}
inline std::string AbstractBytecodeParser::read_str() {
unsigned Size = read_vbr_uint();
const unsigned char *OldAt = At;
At += Size;
if (At > BlockEnd) // Size invalid?
throw std::string("Ran out of data reading a string!");
return std::string((char*)OldAt, Size);
}
inline void AbstractBytecodeParser::read_data(void *Ptr, void *End) {
unsigned char *Start = (unsigned char *)Ptr;
unsigned Amount = (unsigned char *)End - Start;
if (At+Amount > BlockEnd)
throw std::string("Ran out of data!");
std::copy(At, At+Amount, Start);
At += Amount;
}
inline void AbstractBytecodeParser::readBlock(unsigned &Type, unsigned &Size) {
Type = read_uint();
Size = read_uint();
BlockStart = At;
if ( At + Size > BlockEnd )
throw std::string("Attempt to size a block past end of memory");
BlockEnd = At + Size;
if ( reportBlocks ) {
handler->handleBlock( Type, BlockStart, Size );
}
}
const Type *AbstractBytecodeParser::getType(unsigned ID) {
//cerr << "Looking up Type ID: " << ID << "\n";
//cerr << "Looking up Type ID: " << ID << "\n";
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
// Is it a module-level type?
// Is it a module-level type?
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
@ -83,12 +170,12 @@ const Type *AbstractBytecodeParser::getType(unsigned ID) {
return Type::VoidTy;
}
bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
std::vector<unsigned> &Operands) {
bool AbstractBytecodeParser::ParseInstruction(std::vector<unsigned> &Operands) {
BufPtr SaveAt = At;
Operands.clear();
unsigned iType = 0;
unsigned Opcode = 0;
unsigned Op = read(Buf, EndBuf);
unsigned Op = read_uint();
// bits Instruction format: Common to all formats
// --------------------------
@ -134,61 +221,56 @@ bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
Operands[2] = (Op >> 26) & 63;
break;
case 0:
Buf -= 4; // Hrm, try this again...
Opcode = read_vbr_uint(Buf, EndBuf);
At -= 4; // Hrm, try this again...
Opcode = read_vbr_uint();
Opcode >>= 2;
iType = read_vbr_uint(Buf, EndBuf);
iType = read_vbr_uint();
unsigned NumOperands = read_vbr_uint(Buf, EndBuf);
unsigned NumOperands = read_vbr_uint();
Operands.resize(NumOperands);
if (NumOperands == 0)
PARSE_ERROR("Zero-argument instruction found; this is invalid.");
for (unsigned i = 0; i != NumOperands; ++i)
Operands[i] = read_vbr_uint(Buf, EndBuf);
align32(Buf, EndBuf);
Operands[i] = read_vbr_uint();
align32();
break;
}
return handler->handleInstruction(Opcode, getType(iType), Operands);
return handler->handleInstruction(Opcode, getType(iType), Operands, At-SaveAt);
}
/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
/// basicblock at a time. This method reads in one of the basicblock packets.
void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf,
BufPtr EndBuf,
unsigned BlockNo) {
void AbstractBytecodeParser::ParseBasicBlock( unsigned BlockNo) {
handler->handleBasicBlockBegin( BlockNo );
std::vector<unsigned> Args;
bool is_terminating = false;
while (Buf < EndBuf)
is_terminating = ParseInstruction(Buf, EndBuf, Args);
while ( moreInBlock() )
is_terminating = ParseInstruction(Args);
if ( ! is_terminating )
PARSE_ERROR(
"Failed to recognize instruction as terminating at end of block");
PARSE_ERROR("Non-terminated basic block found!");
handler->handleBasicBlockEnd( BlockNo );
}
/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
/// body of a function. In post 1.0 bytecode files, we no longer emit basic
/// block individually, in order to avoid per-basic-block overhead.
unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf,
BufPtr EndBuf) {
unsigned AbstractBytecodeParser::ParseInstructionList() {
unsigned BlockNo = 0;
std::vector<unsigned> Args;
while (Buf < EndBuf) {
while ( moreInBlock() ) {
handler->handleBasicBlockBegin( BlockNo );
// Read instructions into this basic block until we get to a terminator
bool is_terminating = false;
while (Buf < EndBuf && !is_terminating )
is_terminating = ParseInstruction(Buf, EndBuf, Args ) ;
while (moreInBlock() && !is_terminating )
is_terminating = ParseInstruction(Args ) ;
if (!is_terminating)
PARSE_ERROR( "Non-terminated basic block found!");
@ -199,36 +281,34 @@ unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf,
return BlockNo;
}
void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) {
void AbstractBytecodeParser::ParseSymbolTable() {
handler->handleSymbolTableBegin();
while (Buf < EndBuf) {
while ( moreInBlock() ) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
handler->handleSymbolTablePlane( Typ, NumEntries, Ty );
for (unsigned i = 0; i != NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot = read_vbr_uint(Buf, EndBuf);
std::string Name = read_str(Buf, EndBuf);
unsigned slot = read_vbr_uint();
std::string Name = read_str();
if (Typ == Type::TypeTyID)
handler->handleSymbolTableType( i, slot, Name );
else
handler->handleSymbolTableValue( i, slot, Name );
handler->handleSymbolTableValue( i, slot, Name );
}
}
if (Buf > EndBuf)
PARSE_ERROR("Tried to read past end of buffer while reading symbol table.");
checkPastBlockEnd("Symbol Table");
handler->handleSymbolTableEnd();
}
void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
void AbstractBytecodeParser::ParseFunctionLazily() {
if (FunctionSignatureList.empty())
throw std::string("FunctionSignatureList empty!");
@ -236,9 +316,10 @@ void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
FunctionSignatureList.pop_back();
// Save the information for future reading of the function
LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf);
LazyFunctionLoadMap[FType] = LazyFunctionInfo(BlockStart, BlockEnd);
// Pretend we've `parsed' this function
Buf = EndBuf;
At = BlockEnd;
}
void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
@ -251,21 +332,20 @@ void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
return;
}
BufPtr Buf = Fi->second.Buf;
BufPtr EndBuf = Fi->second.EndBuf;
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.Buf;
assert(Fi->first == FType);
LazyFunctionLoadMap.erase(Fi);
this->ParseFunctionBody( FType, Buf, EndBuf );
this->ParseFunctionBody( FType );
}
void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
BufPtr &Buf, BufPtr EndBuf ) {
void AbstractBytecodeParser::ParseFunctionBody(const Type* FType ) {
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
unsigned LinkageType = read_vbr_uint();
switch (LinkageType) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
@ -284,43 +364,45 @@ void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
unsigned BlockNum = 0;
bool InsertedArguments = false;
while (Buf < EndBuf) {
BufPtr MyEnd = BlockEnd;
while ( At < MyEnd ) {
unsigned Type, Size;
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, FunctionTypes );
ParseConstantPool(FunctionTypes );
break;
case BytecodeFormat::CompactionTable:
ParseCompactionTable(Buf, Buf+Size);
ParseCompactionTable();
break;
case BytecodeFormat::BasicBlock:
ParseBasicBlock(Buf, Buf+Size, BlockNum++);
ParseBasicBlock(BlockNum++);
break;
case BytecodeFormat::InstructionList:
if (BlockNum)
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList(Buf, Buf+Size);
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
ParseSymbolTable();
break;
default:
Buf += Size;
if (OldBuf > Buf)
PARSE_ERROR("Wrapped around reading bytecode");
At += Size;
if (OldAt > At)
PARSE_ERROR("Wrapped around reading bytecode");
break;
}
BlockEnd = MyEnd;
// Malformed bc file if read past end of block.
align32(Buf, EndBuf);
align32();
}
handler->handleFunctionEnd(FType);
@ -336,21 +418,24 @@ void AbstractBytecodeParser::ParseAllFunctionBodies() {
while ( Fi != Fe ) {
const Type* FType = Fi->first;
this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf);
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.EndBuf;
this->ParseFunctionBody(FType);
++Fi;
}
}
void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
void AbstractBytecodeParser::ParseCompactionTable() {
handler->handleCompactionTableBegin();
while (Buf != End) {
unsigned NumEntries = read_vbr_uint(Buf, End);
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Ty;
if ((NumEntries & 3) == 3) {
NumEntries >>= 2;
Ty = read_vbr_uint(Buf, End);
Ty = read_vbr_uint();
} else {
Ty = NumEntries >> 2;
NumEntries &= 3;
@ -360,25 +445,24 @@ void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
if (Ty == Type::TypeTyID) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = read_vbr_uint(Buf,End);
unsigned TypeSlot = read_vbr_uint();
const Type *Typ = getGlobalTableType(TypeSlot);
handler->handleCompactionTableType( i, TypeSlot, Typ );
handler->handleCompactionTableType( i, TypeSlot, Typ );
}
} else {
const Type *Typ = getType(Ty);
// Push the implicit zero
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned ValSlot = read_vbr_uint(Buf, End);
handler->handleCompactionTableValue( i, ValSlot, Typ );
unsigned ValSlot = read_vbr_uint();
handler->handleCompactionTableValue( i, ValSlot, Typ );
}
}
}
handler->handleCompactionTableEnd();
}
const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned PrimType = read_vbr_uint(Buf, EndBuf);
const Type *AbstractBytecodeParser::ParseTypeConstant() {
unsigned PrimType = read_vbr_uint();
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
@ -386,13 +470,13 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
switch (PrimType) {
case Type::FunctionTyID: {
const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));
const Type *RetType = getType(read_vbr_uint());
unsigned NumParams = read_vbr_uint(Buf, EndBuf);
unsigned NumParams = read_vbr_uint();
std::vector<const Type*> Params;
while (NumParams--)
Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));
Params.push_back(getType(read_vbr_uint()));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
@ -402,10 +486,10 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
return result;
}
case Type::ArrayTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
unsigned ElTyp = read_vbr_uint();
const Type *ElementType = getType(ElTyp);
unsigned NumElements = read_vbr_uint(Buf, EndBuf);
unsigned NumElements = read_vbr_uint();
BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
<< NumElements << "\n");
@ -415,10 +499,10 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
}
case Type::StructTyID: {
std::vector<const Type*> Elements;
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint();
while (Typ) { // List is terminated by void/0 typeid
Elements.push_back(getType(Typ));
Typ = read_vbr_uint(Buf, EndBuf);
Typ = read_vbr_uint();
}
Type* result = StructType::get(Elements);
@ -426,7 +510,7 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
return result;
}
case Type::PointerTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
unsigned ElTyp = read_vbr_uint();
BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
Type* result = PointerType::get(getType(ElTyp));
handler->handleType( result );
@ -455,10 +539,9 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &Tab,
unsigned NumEntries) {
void AbstractBytecodeParser::ParseTypeConstants(
TypeListTy &Tab, unsigned NumEntries
) {
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
@ -470,7 +553,7 @@ void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
// opaque types just inserted.
//
for (unsigned i = 0; i != NumEntries; ++i) {
const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
const Type *NewTy = ParseTypeConstant(), *OldTy = Tab[i].get();
if (NewTy == 0) throw std::string("Couldn't parse type!");
BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
"' Replacing: " << OldTy << "\n");
@ -497,18 +580,16 @@ void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
}
void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned TypeID) {
void AbstractBytecodeParser::ParseConstantValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
unsigned isExprNumArgs = read_vbr_uint();
if (isExprNumArgs) {
unsigned Opcode = read_vbr_uint(Buf, EndBuf);
unsigned Opcode = read_vbr_uint();
const Type* Typ = getType(TypeID);
// FIXME: Encoding of constant exprs could be much more compact!
@ -517,8 +598,8 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
unsigned ArgValSlot = read_vbr_uint();
unsigned ArgTypeSlot = read_vbr_uint();
BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
<< "' slot: " << ArgValSlot << "\n");
@ -534,7 +615,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
const Type *Ty = getType(TypeID);
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
unsigned Val = read_vbr_uint();
if (Val != 0 && Val != 1)
PARSE_ERROR("Invalid boolean value read.");
@ -545,7 +626,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
unsigned Val = read_vbr_uint();
if (!ConstantUInt::isValueValidForType(Ty, Val))
throw std::string("Invalid unsigned byte/short/int read.");
handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
@ -553,7 +634,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
}
case Type::ULongTyID: {
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) );
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64()) );
break;
}
@ -561,7 +642,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::ShortTyID:
case Type::IntTyID: {
case Type::LongTyID:
int64_t Val = read_vbr_int64(Buf, EndBuf);
int64_t Val = read_vbr_int64();
if (!ConstantSInt::isValueValidForType(Ty, Val))
throw std::string("Invalid signed byte/short/int/long read.");
handler->handleConstantValue( ConstantSInt::get(Ty, Val) );
@ -570,14 +651,14 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::FloatTyID: {
float F;
input_data(Buf, EndBuf, &F, &F+1);
read_data(&F, &F+1);
handler->handleConstantValue( ConstantFP::get(Ty, F) );
break;
}
case Type::DoubleTyID: {
double Val;
input_data(Buf, EndBuf, &Val, &Val+1);
read_data(&Val, &Val+1);
handler->handleConstantValue( ConstantFP::get(Ty, Val) );
break;
}
@ -592,7 +673,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
std::vector<unsigned> Elements;
Elements.reserve(NumElements);
while (NumElements--) // Read all of the elements of the constant.
Elements.push_back(read_vbr_uint(Buf, EndBuf));
Elements.push_back(read_vbr_uint());
handler->handleConstantArray( AT, Elements );
break;
@ -603,15 +684,16 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
std::vector<unsigned> Elements;
Elements.reserve(ST->getNumElements());
for (unsigned i = 0; i != ST->getNumElements(); ++i)
Elements.push_back(read_vbr_uint(Buf, EndBuf));
Elements.push_back(read_vbr_uint());
handler->handleConstantStruct( ST, Elements );
break;
}
case Type::PointerTyID: { // ConstantPointerRef value...
const PointerType *PT = cast<PointerType>(Ty);
unsigned Slot = read_vbr_uint(Buf, EndBuf);
unsigned Slot = read_vbr_uint();
handler->handleConstantPointer( PT, Slot );
break;
}
default:
@ -620,16 +702,13 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
}
}
void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
const unsigned char *EndBuf) {
ParseConstantPool(Buf, EndBuf, ModuleTypes);
void AbstractBytecodeParser::ParseGlobalTypes() {
ParseConstantPool(ModuleTypes);
}
void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned NumEntries ){
void AbstractBytecodeParser::ParseStringConstants(unsigned NumEntries ){
for (; NumEntries; --NumEntries) {
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
throw std::string("String constant data invalid!");
@ -641,7 +720,7 @@ void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
// Read character data. The type tells us how long the string is.
char Data[ATy->getNumElements()];
input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());
read_data(Data, Data+ATy->getNumElements());
std::vector<Constant*> Elements(ATy->getNumElements());
if (ATy->getElementType() == Type::SByteTy)
@ -658,35 +737,33 @@ void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
}
void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
void AbstractBytecodeParser::ParseConstantPool( TypeListTy &TypeTab) {
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
if (Typ == Type::TypeTyID) {
ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
ParseTypeConstants(TypeTab, NumEntries);
} else if (Typ == Type::VoidTyID) {
ParseStringConstants(Buf, EndBuf, NumEntries);
ParseStringConstants(NumEntries);
} else {
BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: "
<< NumEntries << "\n");
for (unsigned i = 0; i < NumEntries; ++i) {
ParseConstantValue(Buf, EndBuf, Typ);
ParseConstantValue(Typ);
}
}
}
if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer.");
checkPastBlockEnd("Constant Pool");
}
void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
void AbstractBytecodeParser::ParseModuleGlobalInfo() {
handler->handleModuleGlobalsBegin();
// Read global variables...
unsigned VarType = read_vbr_uint(Buf, End);
unsigned VarType = read_vbr_uint();
while (VarType != Type::VoidTyID) { // List is terminated by Void
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
// Linkage, bit4+ = slot#
@ -721,17 +798,17 @@ void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
// Create the global variable...
if (hasInitializer) {
unsigned initSlot = read_vbr_uint(Buf,End);
unsigned initSlot = read_vbr_uint();
handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
} else
handler->handleGlobalVariable( ElTy, isConstant, Linkage );
// Get next item
VarType = read_vbr_uint(Buf, End);
VarType = read_vbr_uint();
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature = read_vbr_uint(Buf, End);
unsigned FnSignature = read_vbr_uint();
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (!isa<PointerType>(Ty) ||
@ -750,22 +827,26 @@ void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
handler->handleFunctionDeclaration(Ty);
// Get Next function signature
FnSignature = read_vbr_uint(Buf, End);
FnSignature = read_vbr_uint();
}
if (hasInconsistentModuleGlobalInfo)
align32(Buf, End);
align32();
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
Buf = End;
At = BlockEnd;
handler->handleModuleGlobalsEnd();
}
void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
unsigned Version = read_vbr_uint(Buf, EndBuf);
void AbstractBytecodeParser::ParseVersionInfo() {
unsigned Version = read_vbr_uint();
// Unpack version number: low four bits are for flags, top bits = version
Module::Endianness Endianness;
@ -814,85 +895,164 @@ void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
}
void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) {
void AbstractBytecodeParser::ParseModule() {
unsigned Type, Size;
readBlock(Buf, EndBuf, Type, Size);
if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
// Hrm, not a class?
PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) <<
", S: " << Size << " E: " << unsigned(intptr_t(EndBuf)));
FunctionSignatureList.clear(); // Just in case...
// Read into instance variables...
ParseVersionInfo(Buf, EndBuf);
align32(Buf, EndBuf);
ParseVersionInfo();
align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
bool SeenModuleGlobalInfo = false;
bool SeenGlobalTypePlane = false;
while (Buf < EndBuf) {
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
BufPtr MyEnd = BlockEnd;
while (At < MyEnd) {
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
if ( SeenGlobalTypePlane )
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
ParseGlobalTypes(Buf, Buf+Size);
ParseGlobalTypes();
SeenGlobalTypePlane = true;
break;
case BytecodeFormat::ModuleGlobalInfo:
if ( SeenModuleGlobalInfo )
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo(Buf, Buf+Size);
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
SeenModuleGlobalInfo = true;
break;
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, ModuleTypes);
ParseConstantPool(ModuleTypes);
break;
case BytecodeFormat::Function:
ParseFunctionLazily(Buf, Buf+Size);
ParseFunctionLazily();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
ParseSymbolTable();
break;
default:
Buf += Size;
if (OldBuf > Buf)
{
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
At += Size;
if (OldAt > At) {
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
}
break;
}
align32(Buf, EndBuf);
BlockEnd = MyEnd;
align32();
}
/// Make sure we pulled them all out. If we didn't then there's a declaration
/// but a missing body. That's not allowed.
if (!FunctionSignatureList.empty())
throw std::string(
"Function declared, but bytecode stream ended before definition");
}
void AbstractBytecodeParser::ParseBytecode(
BufPtr Buf, unsigned Length,
BufPtr b, unsigned Length,
const std::string &ModuleID) {
At = MemStart = BlockStart = b;
MemEnd = BlockEnd = b + Length;
handler->handleStart();
unsigned char *EndBuf = (unsigned char*)(Buf + Length);
// Read and check signature...
unsigned Sig = read(Buf, EndBuf);
unsigned Sig = read_uint();
if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
PARSE_ERROR("Invalid bytecode signature: " << Sig);
}
handler->handleModuleBegin(ModuleID);
this->ParseModule(Buf, EndBuf);
unsigned Type, Size;
readBlock(Type, Size);
if ( Type != BytecodeFormat::Module ) {
PARSE_ERROR("Expected Module Block! At: " << unsigned(intptr_t(At))
<< ", Type:" << Type << ", Size:" << Size);
}
if ( At + Size != MemEnd ) {
PARSE_ERROR("Invalid Top Level Block Length! At: "
<< unsigned(intptr_t(At)) << ", Type:" << Type << ", Size:" << Size);
}
this->ParseModule();
handler->handleModuleEnd(ModuleID);
handler->handleFinish();
}
//===----------------------------------------------------------------------===//
//=== Default Implementations of Handler Methods
//===----------------------------------------------------------------------===//
bool BytecodeHandler::handleError(const std::string& str ) { return false; }
void BytecodeHandler::handleStart() { }
void BytecodeHandler::handleFinish() { }
void BytecodeHandler::handleModuleBegin(const std::string& id) { }
void BytecodeHandler::handleModuleEnd(const std::string& id) { }
void BytecodeHandler::handleVersionInfo( unsigned char RevisionNum,
Module::Endianness Endianness, Module::PointerSize PointerSize) { }
void BytecodeHandler::handleModuleGlobalsBegin() { }
void BytecodeHandler::handleGlobalVariable(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes ) { }
void BytecodeHandler::handleInitializedGV(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes,
unsigned initSlot) {}
void BytecodeHandler::handleType( const Type* Ty ) {}
void BytecodeHandler::handleFunctionDeclaration(
const Type* FuncType) {}
void BytecodeHandler::handleModuleGlobalsEnd() { }
void BytecodeHandler::handleCompactionTableBegin() { }
void BytecodeHandler::handleCompactionTablePlane( unsigned Ty,
unsigned NumEntries) {}
void BytecodeHandler::handleCompactionTableType( unsigned i, unsigned TypSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableValue( unsigned i, unsigned ValSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableEnd() { }
void BytecodeHandler::handleSymbolTableBegin() { }
void BytecodeHandler::handleSymbolTablePlane( unsigned Ty, unsigned NumEntries,
const Type* Typ) { }
void BytecodeHandler::handleSymbolTableType( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableValue( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableEnd() { }
void BytecodeHandler::handleFunctionBegin( const Type* FType,
GlobalValue::LinkageTypes linkage ) { }
void BytecodeHandler::handleFunctionEnd( const Type* FType) { }
void BytecodeHandler::handleBasicBlockBegin( unsigned blocknum) { }
bool BytecodeHandler::handleInstruction( unsigned Opcode, const Type* iType,
std::vector<unsigned>& Operands, unsigned Size) {
return Instruction::isTerminator(Opcode);
}
void BytecodeHandler::handleBasicBlockEnd(unsigned blocknum) { }
void BytecodeHandler::handleGlobalConstantsBegin() { }
void BytecodeHandler::handleConstantExpression( unsigned Opcode,
const Type* Typ, std::vector<std::pair<const Type*,unsigned> > ArgVec ) { }
void BytecodeHandler::handleConstantValue( Constant * c ) { }
void BytecodeHandler::handleConstantArray( const ArrayType* AT,
std::vector<unsigned>& Elements ) { }
void BytecodeHandler::handleConstantStruct( const StructType* ST,
std::vector<unsigned>& ElementSlots) { }
void BytecodeHandler::handleConstantPointer(
const PointerType* PT, unsigned Slot) { }
void BytecodeHandler::handleConstantString( const ConstantArray* CA ) {}
void BytecodeHandler::handleGlobalConstantsEnd() {}
void BytecodeHandler::handleAlignment(unsigned numBytes) {}
void BytecodeHandler::handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {}
void BytecodeHandler::handleVBR32(unsigned Size ) {}
void BytecodeHandler::handleVBR64(unsigned Size ) {}
// vim: sw=2

View File

@ -41,7 +41,18 @@ class AbstractBytecodeParser {
/// @name Constructors
/// @{
public:
AbstractBytecodeParser( BytecodeHandler* h ) { handler = h; }
AbstractBytecodeParser(
BytecodeHandler* h,
bool repAlignment = false,
bool repBlocks = false,
bool repVBR = false
) {
handler = h;
reportAlignment = repAlignment;
reportBlocks = repBlocks;
reportVBR = repVBR;
}
~AbstractBytecodeParser() { }
/// @}
@ -86,64 +97,72 @@ public:
/// @{
protected:
/// @brief Parse whole module scope
void ParseModule (BufPtr &Buf, BufPtr End);
void ParseModule ();
/// @brief Parse the version information block
void ParseVersionInfo (BufPtr &Buf, BufPtr End);
void ParseVersionInfo ();
/// @brief Parse the ModuleGlobalInfo block
void ParseModuleGlobalInfo (BufPtr &Buf, BufPtr End);
void ParseModuleGlobalInfo ();
/// @brief Parse a symbol table
void ParseSymbolTable (BufPtr &Buf, BufPtr End);
void ParseSymbolTable ();
/// This function parses LLVM functions lazily. It obtains the type of the
/// function and records where the body of the function is in the bytecode
/// buffer. The caller can then use the ParseNextFunction and
/// ParseAllFunctionBodies to get handler events for the functions.
/// @brief Parse functions lazily.
void ParseFunctionLazily (BufPtr &Buf, BufPtr End);
void ParseFunctionLazily ();
/// @brief Parse a function body
void ParseFunctionBody (const Type* FType, BufPtr &Buf, BufPtr EndBuf);
void ParseFunctionBody (const Type* FType);
/// @brief Parse a compaction table
void ParseCompactionTable (BufPtr &Buf, BufPtr End);
void ParseCompactionTable ();
/// @brief Parse global types
void ParseGlobalTypes (BufPtr &Buf, BufPtr End);
void ParseGlobalTypes ();
/// @brief Parse a basic block (for LLVM 1.0 basic block blocks)
void ParseBasicBlock (BufPtr &Buf, BufPtr End, unsigned BlockNo);
void ParseBasicBlock (unsigned BlockNo);
/// @brief parse an instruction list (for post LLVM 1.0 instruction lists
/// with blocks differentiated by terminating instructions.
unsigned ParseInstructionList(BufPtr &Buf, BufPtr End);
unsigned ParseInstructionList();
/// @brief Parse an instruction.
bool ParseInstruction (BufPtr &Buf, BufPtr End,
std::vector<unsigned>& Args);
bool ParseInstruction (std::vector<unsigned>& Args);
/// @brief Parse a constant pool
void ParseConstantPool (BufPtr &Buf, BufPtr End, TypeListTy& List);
void ParseConstantPool (TypeListTy& List);
/// @brief Parse a constant value
void ParseConstantValue (BufPtr &Buf, BufPtr End, unsigned TypeID);
void ParseConstantValue (unsigned TypeID);
/// @brief Parse a block of types.
void ParseTypeConstants (BufPtr &Buf, BufPtr End, TypeListTy &Tab,
unsigned NumEntries);
void ParseTypeConstants (TypeListTy &Tab, unsigned NumEntries);
/// @brief Parse a single type.
const Type *ParseTypeConstant(BufPtr &Buf, BufPtr End);
const Type *ParseTypeConstant();
/// @brief Parse a string constants block
void ParseStringConstants (BufPtr &Buf, BufPtr End, unsigned NumEntries);
void ParseStringConstants (unsigned NumEntries);
/// @}
/// @name Data
/// @{
private:
BufPtr MemStart; ///< Start of the memory buffer
BufPtr MemEnd; ///< End of the memory buffer
BufPtr BlockStart; ///< Start of current block being parsed
BufPtr BlockEnd; ///< End of current block being parsed
BufPtr At; ///< Where we're currently parsing at
bool reportAlignment; ///< Parser should report alignment?
bool reportBlocks; ///< Parser should report blocks?
bool reportVBR; ///< Report VBR compression events
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
@ -219,9 +238,25 @@ private:
private:
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) ;
/// Is there more to parse in the current block?
inline bool moreInBlock();
/// Have we read past the end of the block
inline void checkPastBlockEnd(const char * block_name);
/// Align to 32 bits
inline void align32();
/// Reader interface
inline unsigned read_uint();
inline unsigned read_vbr_uint();
inline uint64_t read_vbr_uint64();
inline int64_t read_vbr_int64();
inline std::string read_str();
inline void read_data(void *Ptr, void *End);
/// Read a block header
inline void readBlock(unsigned &Type, unsigned &Size);
const Type *AbstractBytecodeParser::getType(unsigned ID);
/// getGlobalTableType - This is just like getType, but when a compaction
@ -443,7 +478,8 @@ public:
virtual bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Length
);
/// @brief Handle the end of a basic block
@ -488,6 +524,16 @@ public:
/// @brief Handle the end of the global constants
virtual void handleGlobalConstantsEnd();
/// @brief Handle an alignment event
virtual void handleAlignment(unsigned numBytes);
virtual void handleBlock(
unsigned BType, ///< The type of block
const unsigned char* StartPtr, ///< The start of the block
unsigned Size ///< The size of the block
);
virtual void handleVBR32(unsigned Size );
virtual void handleVBR64(unsigned Size );
/// @}
};

View File

@ -1,101 +0,0 @@
//===-- ReaderPrimitives.h - Bytecode file format reading prims -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines some basic functions for reading basic primitive types
// from a bytecode stream.
//
//===----------------------------------------------------------------------===//
#ifndef READERPRIMITIVES_H
#define READERPRIMITIVES_H
#include "Support/DataTypes.h"
#include <string>
namespace llvm {
static inline unsigned read(const unsigned char *&Buf,
const unsigned char *EndBuf) {
if (Buf+4 > EndBuf) throw std::string("Ran out of data!");
Buf += 4;
return Buf[-4] | (Buf[-3] << 8) | (Buf[-2] << 16) | (Buf[-1] << 24);
}
// read_vbr - Read an unsigned integer encoded in variable bitrate format.
//
static inline unsigned read_vbr_uint(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned Shift = 0;
unsigned Result = 0;
do {
if (Buf == EndBuf) throw std::string("Ran out of data!");
Result |= (unsigned)((*Buf++) & 0x7F) << Shift;
Shift += 7;
} while (Buf[-1] & 0x80);
return Result;
}
static inline uint64_t read_vbr_uint64(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned Shift = 0;
uint64_t Result = 0;
do {
if (Buf == EndBuf) throw std::string("Ran out of data!");
Result |= (uint64_t)((*Buf++) & 0x7F) << Shift;
Shift += 7;
} while (Buf[-1] & 0x80);
return Result;
}
static inline int64_t read_vbr_int64(const unsigned char *&Buf,
const unsigned char *EndBuf) {
uint64_t R = read_vbr_uint64(Buf, EndBuf);
if (R & 1) {
if (R != 1)
return -(int64_t)(R >> 1);
else // There is no such thing as -0 with integers. "-0" really means
// 0x8000000000000000.
return 1LL << 63;
} else
return (int64_t)(R >> 1);
}
// align32 - Round up to multiple of 32 bits...
static inline void align32(const unsigned char *&Buf,
const unsigned char *EndBuf) {
Buf = (const unsigned char *)((unsigned long)(Buf+3) & (~3UL));
if (Buf > EndBuf) throw std::string("Ran out of data!");
}
static inline std::string read_str(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned Size = read_vbr_uint(Buf, EndBuf);
const unsigned char *OldBuf = Buf;
Buf += Size;
if (Buf > EndBuf) // Size invalid?
throw std::string("Ran out of data reading a string!");
return std::string((char*)OldBuf, Size);
}
static inline void input_data(const unsigned char *&Buf,
const unsigned char *EndBuf,
void *Ptr, void *End) {
unsigned char *Start = (unsigned char *)Ptr;
unsigned Amount = (unsigned char *)End - Start;
if (Buf+Amount > EndBuf) throw std::string("Ran out of data!");
std::copy(Buf, Buf+Amount, Start);
Buf += Amount;
}
} // End llvm namespace
#endif

View File

@ -30,13 +30,13 @@ public:
bool handleError(const std::string& str )
{
std::cerr << "Analysis Error: " << str;
return false;
}
void handleStart()
{
bca.ModuleId.clear();
bca.numBlocks = 0;
bca.numTypes = 0;
bca.numValues = 0;
bca.numFunctions = 0;
@ -49,16 +49,38 @@ public:
bca.numSymTab = 0;
bca.maxTypeSlot = 0;
bca.maxValueSlot = 0;
bca.density = 0.0;
bca.numAlignment = 0;
bca.fileDensity = 0.0;
bca.globalsDensity = 0.0;
bca.functionDensity = 0.0;
bca.vbrCount32 = 0;
bca.vbrCount64 = 0;
bca.vbrCompBytes = 0;
bca.vbrExpdBytes = 0;
bca.FunctionInfo.clear();
bca.BytecodeDump.clear();
bca.BlockSizes[BytecodeFormat::Module] = 0;
bca.BlockSizes[BytecodeFormat::Function] = 0;
bca.BlockSizes[BytecodeFormat::ConstantPool] = 0;
bca.BlockSizes[BytecodeFormat::SymbolTable] = 0;
bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo] = 0;
bca.BlockSizes[BytecodeFormat::GlobalTypePlane] = 0;
bca.BlockSizes[BytecodeFormat::BasicBlock] = 0;
bca.BlockSizes[BytecodeFormat::InstructionList] = 0;
bca.BlockSizes[BytecodeFormat::CompactionTable] = 0;
}
void handleFinish()
{
bca.density = bca.numTypes + bca.numFunctions + bca.numConstants +
bca.numGlobalVars + bca.numInstructions;
bca.density /= bca.byteSize;
bca.fileDensity = double(bca.byteSize) / double( bca.numTypes + bca.numValues );
double globalSize = 0.0;
globalSize += double(bca.BlockSizes[BytecodeFormat::ConstantPool]);
globalSize += double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]);
globalSize += double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]);
bca.globalsDensity = globalSize / double( bca.numTypes + bca.numConstants +
bca.numGlobalVars );
bca.functionDensity = double(bca.BlockSizes[BytecodeFormat::Function]) /
double(bca.numFunctions);
}
void handleModuleBegin(const std::string& id)
@ -78,8 +100,9 @@ public:
{
}
void handleModuleGlobalsBegin()
void handleModuleGlobalsBegin(unsigned size)
{
// bca.globalBytesize += size;
}
void handleGlobalVariable(
@ -89,6 +112,7 @@ public:
)
{
bca.numGlobalVars++;
bca.numValues++;
}
void handleInitializedGV(
@ -99,6 +123,7 @@ public:
)
{
bca.numGlobalVars++;
bca.numValues++;
}
virtual void handleType( const Type* Ty )
@ -111,6 +136,7 @@ public:
)
{
bca.numFunctions++;
bca.numValues++;
}
void handleModuleGlobalsEnd()
@ -200,15 +226,19 @@ public:
)
{
bca.numBasicBlocks++;
bca.numValues++;
}
bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Size
)
{
bca.numInstructions++;
bca.numValues++;
bca.numOperands += Operands.size();
return Instruction::isTerminator(Opcode);
}
@ -227,43 +257,67 @@ public:
)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantValue( Constant * c )
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantArray(
const ArrayType* AT,
std::vector<unsigned>& Elements )
const ArrayType* AT,
std::vector<unsigned>& Elements )
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantStruct(
const StructType* ST,
std::vector<unsigned>& ElementSlots)
const StructType* ST,
std::vector<unsigned>& ElementSlots)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantPointer(
const PointerType* PT, unsigned Slot)
const PointerType* PT, unsigned Slot)
{
bca.numConstants++;
bca.numValues++;
}
void handleConstantString( const ConstantArray* CA )
{
bca.numConstants++;
bca.numValues++;
}
void handleGlobalConstantsEnd()
{
void handleGlobalConstantsEnd() { }
void handleAlignment(unsigned numBytes) {
bca.numAlignment += numBytes;
}
void handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {
bca.numBlocks++;
bca.BlockSizes[llvm::BytecodeFormat::FileBlockIDs(BType)] += Size;
}
virtual void handleVBR32(unsigned Size ) {
bca.vbrCount32++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint32_t);
}
virtual void handleVBR64(unsigned Size ) {
bca.vbrCount64++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint64_t);
}
};
}
@ -277,10 +331,9 @@ void llvm::BytecodeAnalyzer::AnalyzeBytecode(
{
bca.byteSize = Length;
AnalyzerHandler TheHandler(bca);
AbstractBytecodeParser TheParser(&TheHandler);
AbstractBytecodeParser TheParser(&TheHandler, true, true, true);
TheParser.ParseBytecode( Buf, Length, ModuleID );
if ( bca.detailedResults )
TheParser.ParseAllFunctionBodies();
TheParser.ParseAllFunctionBodies();
}
// vim: sw=2

View File

@ -18,6 +18,7 @@
#include "Support/StringExtras.h"
#include "Config/unistd.h"
#include <cerrno>
#include <iomanip>
using namespace llvm;
@ -46,7 +47,7 @@ static std::string ErrnoMessage (int savedErrNum, std::string descr) {
}
BytecodeFileAnalyzer::BytecodeFileAnalyzer(const std::string &Filename,
BytecodeAnalysis& bca) {
BytecodeAnalysis& bca) {
Buffer = (unsigned char*)ReadFileIntoAddressSpace(Filename, Length);
if (Buffer == 0)
throw "Error reading file '" + Filename + "'.";
@ -84,16 +85,16 @@ namespace {
public:
BytecodeBufferAnalyzer(const unsigned char *Buf, unsigned Length,
BytecodeAnalysis& bca, const std::string &ModuleID);
BytecodeAnalysis& bca, const std::string &ModuleID);
~BytecodeBufferAnalyzer();
};
}
BytecodeBufferAnalyzer::BytecodeBufferAnalyzer(const unsigned char *Buf,
unsigned Length,
BytecodeAnalysis& bca,
const std::string &ModuleID) {
unsigned Length,
BytecodeAnalysis& bca,
const std::string &ModuleID) {
// If not aligned, allocate a new buffer to hold the bytecode...
const unsigned char *ParseBegin = 0;
if ((intptr_t)Buf & 3) {
@ -200,28 +201,118 @@ void llvm::AnalyzeBytecodeBuffer(
/// This function prints the contents of rhe BytecodeAnalysis structure in
/// a human legible form.
/// @brief Print BytecodeAnalysis structure to an ostream
namespace {
inline static void print(std::ostream& Out, const char*title,
unsigned val, bool nl = true ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << val << "\n";
}
inline static void print(std::ostream&Out, const char*title,
double val ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << val << "\n" ;
}
inline static void print(std::ostream&Out, const char*title,
double top, double bot ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << top
<< " (" << std::left << std::setw(0) << std::setprecision(4)
<< (top/bot)*100.0 << "%)\n";
}
inline static void print(std::ostream&Out, const char*title,
std::string val, bool nl = true) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::left << val << (nl ? "\n" : "");
}
}
void llvm::PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
{
Out << " Bytecode Analysis of: " << bca.ModuleId << "\n";
Out << " File Size: " << bca.byteSize << "\n";
Out << " Number Of Types: " << bca.numTypes << "\n";
Out << " Number Of Constants: " << bca.numConstants << "\n";
Out << " Number Of Global Variables: " << bca.numGlobalVars << "\n";
Out << " Number Of Functions: " << bca.numFunctions << "\n";
Out << " Number Of Basic Blocks: " << bca.numBasicBlocks << "\n";
Out << " Number Of Instructions: " << bca.numInstructions << "\n";
Out << " Number Of Operands: " << bca.numOperands << "\n";
Out << "Number Of Compaction Tables: " << bca.numCmpctnTables << "\n";
Out << " Number Of Symbol Tables: " << bca.numSymTab << "\n";
Out << " Maximum Type Slot Number: " << bca.maxTypeSlot << "\n";
Out << " Maximum Value Slot Number: " << bca.maxValueSlot << "\n";
Out << " Bytecode Density: " << bca.density << "\n";
print(Out, "Bytecode Analysis Of Module", bca.ModuleId);
print(Out, "File Size", bca.byteSize);
print(Out, "Bytecode Compression Index",std::string("TBD"));
print(Out, "Number Of Bytecode Blocks", bca.numBlocks);
print(Out, "Number Of Types", bca.numTypes);
print(Out, "Number Of Values", bca.numValues);
print(Out, "Number Of Constants", bca.numConstants);
print(Out, "Number Of Global Variables", bca.numGlobalVars);
print(Out, "Number Of Functions", bca.numFunctions);
print(Out, "Number Of Basic Blocks", bca.numBasicBlocks);
print(Out, "Number Of Instructions", bca.numInstructions);
print(Out, "Number Of Operands", bca.numOperands);
print(Out, "Number Of Compaction Tables", bca.numCmpctnTables);
print(Out, "Number Of Symbol Tables", bca.numSymTab);
print(Out, "Maximum Type Slot Number", bca.maxTypeSlot);
print(Out, "Maximum Value Slot Number", bca.maxValueSlot);
print(Out, "Bytes Thrown To Alignment", double(bca.numAlignment),
double(bca.byteSize));
print(Out, "File Density (bytes/def)", bca.fileDensity);
print(Out, "Globals Density (bytes/def)", bca.globalsDensity);
print(Out, "Function Density (bytes/func)", bca.functionDensity);
print(Out, "Number of VBR 32-bit Integers", bca.vbrCount32);
print(Out, "Number of VBR 64-bit Integers", bca.vbrCount64);
print(Out, "Number of VBR Compressed Bytes", bca.vbrCompBytes);
print(Out, "Number of VBR Expanded Bytes", bca.vbrExpdBytes);
print(Out, "VBR Savings",
double(bca.vbrExpdBytes)-double(bca.vbrCompBytes),
double(bca.byteSize));
if ( bca.detailedResults )
Out << "Detailed Results Not Implemented Yet.\n";
if ( bca.detailedResults ) {
print(Out, "Module Bytes",
double(bca.BlockSizes[BytecodeFormat::Module]),
double(bca.byteSize));
print(Out, "Function Bytes",
double(bca.BlockSizes[BytecodeFormat::Function]),
double(bca.byteSize));
print(Out, "Constant Pool Bytes",
double(bca.BlockSizes[BytecodeFormat::ConstantPool]),
double(bca.byteSize));
print(Out, "Symbol Table Bytes",
double(bca.BlockSizes[BytecodeFormat::SymbolTable]),
double(bca.byteSize));
print(Out, "Module Global Info Bytes",
double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]),
double(bca.byteSize));
print(Out, "Global Type Plane Bytes",
double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]),
double(bca.byteSize));
print(Out, "Basic Block Bytes",
double(bca.BlockSizes[BytecodeFormat::BasicBlock]),
double(bca.byteSize));
print(Out, "Instruction List Bytes",
double(bca.BlockSizes[BytecodeFormat::InstructionList]),
double(bca.byteSize));
print(Out, "Compaction Table Bytes",
double(bca.BlockSizes[BytecodeFormat::CompactionTable]),
double(bca.byteSize));
std::map<unsigned,BytecodeAnalysis::BytecodeFunctionInfo>::iterator I =
bca.FunctionInfo.begin();
std::map<unsigned,BytecodeAnalysis::BytecodeFunctionInfo>::iterator E =
bca.FunctionInfo.end();
while ( I != E ) {
Out << std::left << std::setw(0);
Out << "Function: " << I->second.name << " Slot=" << I->first << "\n";
print(Out,"Type:", I->second.description);
print(Out,"Byte Size", I->second.byteSize);
print(Out,"Instructions", I->second.numInstructions);
print(Out,"Basic Blocks", I->second.numBasicBlocks);
print(Out,"Operand", I->second.numOperands);
print(Out,"Function Density", I->second.density);
print(Out,"VBR Effectiveness", I->second.vbrEffectiveness);
++I;
}
}
if ( bca.dumpBytecode )
Out << bca.BytecodeDump;
}
// vim: sw=2

View File

@ -212,7 +212,8 @@ public:
virtual bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Size
)
{
std::cout << " INST: OpCode="

View File

@ -1,4 +1,4 @@
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//===- Parser.cpp - Code to parse bytecode files --------------------------===//
//
// The LLVM Compiler Infrastructure
//
@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
// This library implements the functionality defined in llvm/Bytecode/Parser.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
@ -17,7 +17,6 @@
//===----------------------------------------------------------------------===//
#include "AnalyzerInternals.h"
#include "ReaderPrimitives.h"
#include "llvm/Module.h"
#include "llvm/Bytecode/Format.h"
#include "Support/StringExtras.h"
@ -37,40 +36,128 @@ using namespace llvm;
#define BCR_TRACE(n, X)
#endif
#define PARSE_ERROR(inserters) \
{ \
#define PARSE_ERROR(inserters) { \
std::ostringstream errormsg; \
errormsg << inserters; \
if ( ! handler->handleError( errormsg.str() ) ) \
throw std::string(errormsg.str()); \
}
inline bool AbstractBytecodeParser::moreInBlock() {
return At < BlockEnd;
}
inline void AbstractBytecodeParser::readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size)
{
Type = read(Buf, EndBuf);
Size = read(Buf, EndBuf);
inline void AbstractBytecodeParser::checkPastBlockEnd(const char * block_name) {
if ( At > BlockEnd )
PARSE_ERROR("Attempt to read past the end of " << block_name << " block.");
}
inline void AbstractBytecodeParser::align32() {
BufPtr Save = At;
At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
if ( reportAlignment && At > Save ) handler->handleAlignment( At - Save );
if (At > BlockEnd)
throw std::string("Ran out of data while aligning!");
}
inline unsigned AbstractBytecodeParser::read_uint() {
if (At+4 > BlockEnd)
throw std::string("Ran out of data reading uint!");
At += 4;
return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
}
inline unsigned AbstractBytecodeParser::read_vbr_uint() {
unsigned Shift = 0;
unsigned Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint!");
Result |= (unsigned)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR32(At-Save);
return Result;
}
inline uint64_t AbstractBytecodeParser::read_vbr_uint64() {
unsigned Shift = 0;
uint64_t Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint64!");
Result |= (uint64_t)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR64(At-Save);
return Result;
}
inline int64_t AbstractBytecodeParser::read_vbr_int64() {
uint64_t R = read_vbr_uint64();
if (R & 1) {
if (R != 1)
return -(int64_t)(R >> 1);
else // There is no such thing as -0 with integers. "-0" really means
// 0x8000000000000000.
return 1LL << 63;
} else
return (int64_t)(R >> 1);
}
inline std::string AbstractBytecodeParser::read_str() {
unsigned Size = read_vbr_uint();
const unsigned char *OldAt = At;
At += Size;
if (At > BlockEnd) // Size invalid?
throw std::string("Ran out of data reading a string!");
return std::string((char*)OldAt, Size);
}
inline void AbstractBytecodeParser::read_data(void *Ptr, void *End) {
unsigned char *Start = (unsigned char *)Ptr;
unsigned Amount = (unsigned char *)End - Start;
if (At+Amount > BlockEnd)
throw std::string("Ran out of data!");
std::copy(At, At+Amount, Start);
At += Amount;
}
inline void AbstractBytecodeParser::readBlock(unsigned &Type, unsigned &Size) {
Type = read_uint();
Size = read_uint();
BlockStart = At;
if ( At + Size > BlockEnd )
throw std::string("Attempt to size a block past end of memory");
BlockEnd = At + Size;
if ( reportBlocks ) {
handler->handleBlock( Type, BlockStart, Size );
}
}
const Type *AbstractBytecodeParser::getType(unsigned ID) {
//cerr << "Looking up Type ID: " << ID << "\n";
//cerr << "Looking up Type ID: " << ID << "\n";
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
// Is it a module-level type?
// Is it a module-level type?
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
@ -83,12 +170,12 @@ const Type *AbstractBytecodeParser::getType(unsigned ID) {
return Type::VoidTy;
}
bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
std::vector<unsigned> &Operands) {
bool AbstractBytecodeParser::ParseInstruction(std::vector<unsigned> &Operands) {
BufPtr SaveAt = At;
Operands.clear();
unsigned iType = 0;
unsigned Opcode = 0;
unsigned Op = read(Buf, EndBuf);
unsigned Op = read_uint();
// bits Instruction format: Common to all formats
// --------------------------
@ -134,61 +221,56 @@ bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
Operands[2] = (Op >> 26) & 63;
break;
case 0:
Buf -= 4; // Hrm, try this again...
Opcode = read_vbr_uint(Buf, EndBuf);
At -= 4; // Hrm, try this again...
Opcode = read_vbr_uint();
Opcode >>= 2;
iType = read_vbr_uint(Buf, EndBuf);
iType = read_vbr_uint();
unsigned NumOperands = read_vbr_uint(Buf, EndBuf);
unsigned NumOperands = read_vbr_uint();
Operands.resize(NumOperands);
if (NumOperands == 0)
PARSE_ERROR("Zero-argument instruction found; this is invalid.");
for (unsigned i = 0; i != NumOperands; ++i)
Operands[i] = read_vbr_uint(Buf, EndBuf);
align32(Buf, EndBuf);
Operands[i] = read_vbr_uint();
align32();
break;
}
return handler->handleInstruction(Opcode, getType(iType), Operands);
return handler->handleInstruction(Opcode, getType(iType), Operands, At-SaveAt);
}
/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
/// basicblock at a time. This method reads in one of the basicblock packets.
void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf,
BufPtr EndBuf,
unsigned BlockNo) {
void AbstractBytecodeParser::ParseBasicBlock( unsigned BlockNo) {
handler->handleBasicBlockBegin( BlockNo );
std::vector<unsigned> Args;
bool is_terminating = false;
while (Buf < EndBuf)
is_terminating = ParseInstruction(Buf, EndBuf, Args);
while ( moreInBlock() )
is_terminating = ParseInstruction(Args);
if ( ! is_terminating )
PARSE_ERROR(
"Failed to recognize instruction as terminating at end of block");
PARSE_ERROR("Non-terminated basic block found!");
handler->handleBasicBlockEnd( BlockNo );
}
/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
/// body of a function. In post 1.0 bytecode files, we no longer emit basic
/// block individually, in order to avoid per-basic-block overhead.
unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf,
BufPtr EndBuf) {
unsigned AbstractBytecodeParser::ParseInstructionList() {
unsigned BlockNo = 0;
std::vector<unsigned> Args;
while (Buf < EndBuf) {
while ( moreInBlock() ) {
handler->handleBasicBlockBegin( BlockNo );
// Read instructions into this basic block until we get to a terminator
bool is_terminating = false;
while (Buf < EndBuf && !is_terminating )
is_terminating = ParseInstruction(Buf, EndBuf, Args ) ;
while (moreInBlock() && !is_terminating )
is_terminating = ParseInstruction(Args ) ;
if (!is_terminating)
PARSE_ERROR( "Non-terminated basic block found!");
@ -199,36 +281,34 @@ unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf,
return BlockNo;
}
void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) {
void AbstractBytecodeParser::ParseSymbolTable() {
handler->handleSymbolTableBegin();
while (Buf < EndBuf) {
while ( moreInBlock() ) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
handler->handleSymbolTablePlane( Typ, NumEntries, Ty );
for (unsigned i = 0; i != NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot = read_vbr_uint(Buf, EndBuf);
std::string Name = read_str(Buf, EndBuf);
unsigned slot = read_vbr_uint();
std::string Name = read_str();
if (Typ == Type::TypeTyID)
handler->handleSymbolTableType( i, slot, Name );
else
handler->handleSymbolTableValue( i, slot, Name );
handler->handleSymbolTableValue( i, slot, Name );
}
}
if (Buf > EndBuf)
PARSE_ERROR("Tried to read past end of buffer while reading symbol table.");
checkPastBlockEnd("Symbol Table");
handler->handleSymbolTableEnd();
}
void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
void AbstractBytecodeParser::ParseFunctionLazily() {
if (FunctionSignatureList.empty())
throw std::string("FunctionSignatureList empty!");
@ -236,9 +316,10 @@ void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
FunctionSignatureList.pop_back();
// Save the information for future reading of the function
LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf);
LazyFunctionLoadMap[FType] = LazyFunctionInfo(BlockStart, BlockEnd);
// Pretend we've `parsed' this function
Buf = EndBuf;
At = BlockEnd;
}
void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
@ -251,21 +332,20 @@ void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
return;
}
BufPtr Buf = Fi->second.Buf;
BufPtr EndBuf = Fi->second.EndBuf;
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.Buf;
assert(Fi->first == FType);
LazyFunctionLoadMap.erase(Fi);
this->ParseFunctionBody( FType, Buf, EndBuf );
this->ParseFunctionBody( FType );
}
void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
BufPtr &Buf, BufPtr EndBuf ) {
void AbstractBytecodeParser::ParseFunctionBody(const Type* FType ) {
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
unsigned LinkageType = read_vbr_uint();
switch (LinkageType) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
@ -284,43 +364,45 @@ void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
unsigned BlockNum = 0;
bool InsertedArguments = false;
while (Buf < EndBuf) {
BufPtr MyEnd = BlockEnd;
while ( At < MyEnd ) {
unsigned Type, Size;
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, FunctionTypes );
ParseConstantPool(FunctionTypes );
break;
case BytecodeFormat::CompactionTable:
ParseCompactionTable(Buf, Buf+Size);
ParseCompactionTable();
break;
case BytecodeFormat::BasicBlock:
ParseBasicBlock(Buf, Buf+Size, BlockNum++);
ParseBasicBlock(BlockNum++);
break;
case BytecodeFormat::InstructionList:
if (BlockNum)
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList(Buf, Buf+Size);
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
ParseSymbolTable();
break;
default:
Buf += Size;
if (OldBuf > Buf)
PARSE_ERROR("Wrapped around reading bytecode");
At += Size;
if (OldAt > At)
PARSE_ERROR("Wrapped around reading bytecode");
break;
}
BlockEnd = MyEnd;
// Malformed bc file if read past end of block.
align32(Buf, EndBuf);
align32();
}
handler->handleFunctionEnd(FType);
@ -336,21 +418,24 @@ void AbstractBytecodeParser::ParseAllFunctionBodies() {
while ( Fi != Fe ) {
const Type* FType = Fi->first;
this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf);
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.EndBuf;
this->ParseFunctionBody(FType);
++Fi;
}
}
void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
void AbstractBytecodeParser::ParseCompactionTable() {
handler->handleCompactionTableBegin();
while (Buf != End) {
unsigned NumEntries = read_vbr_uint(Buf, End);
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Ty;
if ((NumEntries & 3) == 3) {
NumEntries >>= 2;
Ty = read_vbr_uint(Buf, End);
Ty = read_vbr_uint();
} else {
Ty = NumEntries >> 2;
NumEntries &= 3;
@ -360,25 +445,24 @@ void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
if (Ty == Type::TypeTyID) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = read_vbr_uint(Buf,End);
unsigned TypeSlot = read_vbr_uint();
const Type *Typ = getGlobalTableType(TypeSlot);
handler->handleCompactionTableType( i, TypeSlot, Typ );
handler->handleCompactionTableType( i, TypeSlot, Typ );
}
} else {
const Type *Typ = getType(Ty);
// Push the implicit zero
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned ValSlot = read_vbr_uint(Buf, End);
handler->handleCompactionTableValue( i, ValSlot, Typ );
unsigned ValSlot = read_vbr_uint();
handler->handleCompactionTableValue( i, ValSlot, Typ );
}
}
}
handler->handleCompactionTableEnd();
}
const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned PrimType = read_vbr_uint(Buf, EndBuf);
const Type *AbstractBytecodeParser::ParseTypeConstant() {
unsigned PrimType = read_vbr_uint();
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
@ -386,13 +470,13 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
switch (PrimType) {
case Type::FunctionTyID: {
const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));
const Type *RetType = getType(read_vbr_uint());
unsigned NumParams = read_vbr_uint(Buf, EndBuf);
unsigned NumParams = read_vbr_uint();
std::vector<const Type*> Params;
while (NumParams--)
Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));
Params.push_back(getType(read_vbr_uint()));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
@ -402,10 +486,10 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
return result;
}
case Type::ArrayTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
unsigned ElTyp = read_vbr_uint();
const Type *ElementType = getType(ElTyp);
unsigned NumElements = read_vbr_uint(Buf, EndBuf);
unsigned NumElements = read_vbr_uint();
BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
<< NumElements << "\n");
@ -415,10 +499,10 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
}
case Type::StructTyID: {
std::vector<const Type*> Elements;
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint();
while (Typ) { // List is terminated by void/0 typeid
Elements.push_back(getType(Typ));
Typ = read_vbr_uint(Buf, EndBuf);
Typ = read_vbr_uint();
}
Type* result = StructType::get(Elements);
@ -426,7 +510,7 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
return result;
}
case Type::PointerTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
unsigned ElTyp = read_vbr_uint();
BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
Type* result = PointerType::get(getType(ElTyp));
handler->handleType( result );
@ -455,10 +539,9 @@ const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &Tab,
unsigned NumEntries) {
void AbstractBytecodeParser::ParseTypeConstants(
TypeListTy &Tab, unsigned NumEntries
) {
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
@ -470,7 +553,7 @@ void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
// opaque types just inserted.
//
for (unsigned i = 0; i != NumEntries; ++i) {
const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
const Type *NewTy = ParseTypeConstant(), *OldTy = Tab[i].get();
if (NewTy == 0) throw std::string("Couldn't parse type!");
BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
"' Replacing: " << OldTy << "\n");
@ -497,18 +580,16 @@ void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
}
void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned TypeID) {
void AbstractBytecodeParser::ParseConstantValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
unsigned isExprNumArgs = read_vbr_uint();
if (isExprNumArgs) {
unsigned Opcode = read_vbr_uint(Buf, EndBuf);
unsigned Opcode = read_vbr_uint();
const Type* Typ = getType(TypeID);
// FIXME: Encoding of constant exprs could be much more compact!
@ -517,8 +598,8 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
unsigned ArgValSlot = read_vbr_uint();
unsigned ArgTypeSlot = read_vbr_uint();
BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
<< "' slot: " << ArgValSlot << "\n");
@ -534,7 +615,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
const Type *Ty = getType(TypeID);
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
unsigned Val = read_vbr_uint();
if (Val != 0 && Val != 1)
PARSE_ERROR("Invalid boolean value read.");
@ -545,7 +626,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
unsigned Val = read_vbr_uint();
if (!ConstantUInt::isValueValidForType(Ty, Val))
throw std::string("Invalid unsigned byte/short/int read.");
handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
@ -553,7 +634,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
}
case Type::ULongTyID: {
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) );
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64()) );
break;
}
@ -561,7 +642,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::ShortTyID:
case Type::IntTyID: {
case Type::LongTyID:
int64_t Val = read_vbr_int64(Buf, EndBuf);
int64_t Val = read_vbr_int64();
if (!ConstantSInt::isValueValidForType(Ty, Val))
throw std::string("Invalid signed byte/short/int/long read.");
handler->handleConstantValue( ConstantSInt::get(Ty, Val) );
@ -570,14 +651,14 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
case Type::FloatTyID: {
float F;
input_data(Buf, EndBuf, &F, &F+1);
read_data(&F, &F+1);
handler->handleConstantValue( ConstantFP::get(Ty, F) );
break;
}
case Type::DoubleTyID: {
double Val;
input_data(Buf, EndBuf, &Val, &Val+1);
read_data(&Val, &Val+1);
handler->handleConstantValue( ConstantFP::get(Ty, Val) );
break;
}
@ -592,7 +673,7 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
std::vector<unsigned> Elements;
Elements.reserve(NumElements);
while (NumElements--) // Read all of the elements of the constant.
Elements.push_back(read_vbr_uint(Buf, EndBuf));
Elements.push_back(read_vbr_uint());
handler->handleConstantArray( AT, Elements );
break;
@ -603,15 +684,16 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
std::vector<unsigned> Elements;
Elements.reserve(ST->getNumElements());
for (unsigned i = 0; i != ST->getNumElements(); ++i)
Elements.push_back(read_vbr_uint(Buf, EndBuf));
Elements.push_back(read_vbr_uint());
handler->handleConstantStruct( ST, Elements );
break;
}
case Type::PointerTyID: { // ConstantPointerRef value...
const PointerType *PT = cast<PointerType>(Ty);
unsigned Slot = read_vbr_uint(Buf, EndBuf);
unsigned Slot = read_vbr_uint();
handler->handleConstantPointer( PT, Slot );
break;
}
default:
@ -620,16 +702,13 @@ void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
}
}
void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
const unsigned char *EndBuf) {
ParseConstantPool(Buf, EndBuf, ModuleTypes);
void AbstractBytecodeParser::ParseGlobalTypes() {
ParseConstantPool(ModuleTypes);
}
void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned NumEntries ){
void AbstractBytecodeParser::ParseStringConstants(unsigned NumEntries ){
for (; NumEntries; --NumEntries) {
unsigned Typ = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
throw std::string("String constant data invalid!");
@ -641,7 +720,7 @@ void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
// Read character data. The type tells us how long the string is.
char Data[ATy->getNumElements()];
input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());
read_data(Data, Data+ATy->getNumElements());
std::vector<Constant*> Elements(ATy->getNumElements());
if (ATy->getElementType() == Type::SByteTy)
@ -658,35 +737,33 @@ void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
}
void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
void AbstractBytecodeParser::ParseConstantPool( TypeListTy &TypeTab) {
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
if (Typ == Type::TypeTyID) {
ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
ParseTypeConstants(TypeTab, NumEntries);
} else if (Typ == Type::VoidTyID) {
ParseStringConstants(Buf, EndBuf, NumEntries);
ParseStringConstants(NumEntries);
} else {
BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: "
<< NumEntries << "\n");
for (unsigned i = 0; i < NumEntries; ++i) {
ParseConstantValue(Buf, EndBuf, Typ);
ParseConstantValue(Typ);
}
}
}
if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer.");
checkPastBlockEnd("Constant Pool");
}
void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
void AbstractBytecodeParser::ParseModuleGlobalInfo() {
handler->handleModuleGlobalsBegin();
// Read global variables...
unsigned VarType = read_vbr_uint(Buf, End);
unsigned VarType = read_vbr_uint();
while (VarType != Type::VoidTyID) { // List is terminated by Void
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
// Linkage, bit4+ = slot#
@ -721,17 +798,17 @@ void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
// Create the global variable...
if (hasInitializer) {
unsigned initSlot = read_vbr_uint(Buf,End);
unsigned initSlot = read_vbr_uint();
handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
} else
handler->handleGlobalVariable( ElTy, isConstant, Linkage );
// Get next item
VarType = read_vbr_uint(Buf, End);
VarType = read_vbr_uint();
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature = read_vbr_uint(Buf, End);
unsigned FnSignature = read_vbr_uint();
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (!isa<PointerType>(Ty) ||
@ -750,22 +827,26 @@ void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
handler->handleFunctionDeclaration(Ty);
// Get Next function signature
FnSignature = read_vbr_uint(Buf, End);
FnSignature = read_vbr_uint();
}
if (hasInconsistentModuleGlobalInfo)
align32(Buf, End);
align32();
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
Buf = End;
At = BlockEnd;
handler->handleModuleGlobalsEnd();
}
void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
unsigned Version = read_vbr_uint(Buf, EndBuf);
void AbstractBytecodeParser::ParseVersionInfo() {
unsigned Version = read_vbr_uint();
// Unpack version number: low four bits are for flags, top bits = version
Module::Endianness Endianness;
@ -814,85 +895,164 @@ void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
}
void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) {
void AbstractBytecodeParser::ParseModule() {
unsigned Type, Size;
readBlock(Buf, EndBuf, Type, Size);
if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
// Hrm, not a class?
PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) <<
", S: " << Size << " E: " << unsigned(intptr_t(EndBuf)));
FunctionSignatureList.clear(); // Just in case...
// Read into instance variables...
ParseVersionInfo(Buf, EndBuf);
align32(Buf, EndBuf);
ParseVersionInfo();
align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
bool SeenModuleGlobalInfo = false;
bool SeenGlobalTypePlane = false;
while (Buf < EndBuf) {
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
BufPtr MyEnd = BlockEnd;
while (At < MyEnd) {
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
if ( SeenGlobalTypePlane )
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
ParseGlobalTypes(Buf, Buf+Size);
ParseGlobalTypes();
SeenGlobalTypePlane = true;
break;
case BytecodeFormat::ModuleGlobalInfo:
if ( SeenModuleGlobalInfo )
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo(Buf, Buf+Size);
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
SeenModuleGlobalInfo = true;
break;
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, ModuleTypes);
ParseConstantPool(ModuleTypes);
break;
case BytecodeFormat::Function:
ParseFunctionLazily(Buf, Buf+Size);
ParseFunctionLazily();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
ParseSymbolTable();
break;
default:
Buf += Size;
if (OldBuf > Buf)
{
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
At += Size;
if (OldAt > At) {
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
}
break;
}
align32(Buf, EndBuf);
BlockEnd = MyEnd;
align32();
}
/// Make sure we pulled them all out. If we didn't then there's a declaration
/// but a missing body. That's not allowed.
if (!FunctionSignatureList.empty())
throw std::string(
"Function declared, but bytecode stream ended before definition");
}
void AbstractBytecodeParser::ParseBytecode(
BufPtr Buf, unsigned Length,
BufPtr b, unsigned Length,
const std::string &ModuleID) {
At = MemStart = BlockStart = b;
MemEnd = BlockEnd = b + Length;
handler->handleStart();
unsigned char *EndBuf = (unsigned char*)(Buf + Length);
// Read and check signature...
unsigned Sig = read(Buf, EndBuf);
unsigned Sig = read_uint();
if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
PARSE_ERROR("Invalid bytecode signature: " << Sig);
}
handler->handleModuleBegin(ModuleID);
this->ParseModule(Buf, EndBuf);
unsigned Type, Size;
readBlock(Type, Size);
if ( Type != BytecodeFormat::Module ) {
PARSE_ERROR("Expected Module Block! At: " << unsigned(intptr_t(At))
<< ", Type:" << Type << ", Size:" << Size);
}
if ( At + Size != MemEnd ) {
PARSE_ERROR("Invalid Top Level Block Length! At: "
<< unsigned(intptr_t(At)) << ", Type:" << Type << ", Size:" << Size);
}
this->ParseModule();
handler->handleModuleEnd(ModuleID);
handler->handleFinish();
}
//===----------------------------------------------------------------------===//
//=== Default Implementations of Handler Methods
//===----------------------------------------------------------------------===//
bool BytecodeHandler::handleError(const std::string& str ) { return false; }
void BytecodeHandler::handleStart() { }
void BytecodeHandler::handleFinish() { }
void BytecodeHandler::handleModuleBegin(const std::string& id) { }
void BytecodeHandler::handleModuleEnd(const std::string& id) { }
void BytecodeHandler::handleVersionInfo( unsigned char RevisionNum,
Module::Endianness Endianness, Module::PointerSize PointerSize) { }
void BytecodeHandler::handleModuleGlobalsBegin() { }
void BytecodeHandler::handleGlobalVariable(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes ) { }
void BytecodeHandler::handleInitializedGV(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes,
unsigned initSlot) {}
void BytecodeHandler::handleType( const Type* Ty ) {}
void BytecodeHandler::handleFunctionDeclaration(
const Type* FuncType) {}
void BytecodeHandler::handleModuleGlobalsEnd() { }
void BytecodeHandler::handleCompactionTableBegin() { }
void BytecodeHandler::handleCompactionTablePlane( unsigned Ty,
unsigned NumEntries) {}
void BytecodeHandler::handleCompactionTableType( unsigned i, unsigned TypSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableValue( unsigned i, unsigned ValSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableEnd() { }
void BytecodeHandler::handleSymbolTableBegin() { }
void BytecodeHandler::handleSymbolTablePlane( unsigned Ty, unsigned NumEntries,
const Type* Typ) { }
void BytecodeHandler::handleSymbolTableType( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableValue( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableEnd() { }
void BytecodeHandler::handleFunctionBegin( const Type* FType,
GlobalValue::LinkageTypes linkage ) { }
void BytecodeHandler::handleFunctionEnd( const Type* FType) { }
void BytecodeHandler::handleBasicBlockBegin( unsigned blocknum) { }
bool BytecodeHandler::handleInstruction( unsigned Opcode, const Type* iType,
std::vector<unsigned>& Operands, unsigned Size) {
return Instruction::isTerminator(Opcode);
}
void BytecodeHandler::handleBasicBlockEnd(unsigned blocknum) { }
void BytecodeHandler::handleGlobalConstantsBegin() { }
void BytecodeHandler::handleConstantExpression( unsigned Opcode,
const Type* Typ, std::vector<std::pair<const Type*,unsigned> > ArgVec ) { }
void BytecodeHandler::handleConstantValue( Constant * c ) { }
void BytecodeHandler::handleConstantArray( const ArrayType* AT,
std::vector<unsigned>& Elements ) { }
void BytecodeHandler::handleConstantStruct( const StructType* ST,
std::vector<unsigned>& ElementSlots) { }
void BytecodeHandler::handleConstantPointer(
const PointerType* PT, unsigned Slot) { }
void BytecodeHandler::handleConstantString( const ConstantArray* CA ) {}
void BytecodeHandler::handleGlobalConstantsEnd() {}
void BytecodeHandler::handleAlignment(unsigned numBytes) {}
void BytecodeHandler::handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {}
void BytecodeHandler::handleVBR32(unsigned Size ) {}
void BytecodeHandler::handleVBR64(unsigned Size ) {}
// vim: sw=2

View File

@ -41,7 +41,18 @@ class AbstractBytecodeParser {
/// @name Constructors
/// @{
public:
AbstractBytecodeParser( BytecodeHandler* h ) { handler = h; }
AbstractBytecodeParser(
BytecodeHandler* h,
bool repAlignment = false,
bool repBlocks = false,
bool repVBR = false
) {
handler = h;
reportAlignment = repAlignment;
reportBlocks = repBlocks;
reportVBR = repVBR;
}
~AbstractBytecodeParser() { }
/// @}
@ -86,64 +97,72 @@ public:
/// @{
protected:
/// @brief Parse whole module scope
void ParseModule (BufPtr &Buf, BufPtr End);
void ParseModule ();
/// @brief Parse the version information block
void ParseVersionInfo (BufPtr &Buf, BufPtr End);
void ParseVersionInfo ();
/// @brief Parse the ModuleGlobalInfo block
void ParseModuleGlobalInfo (BufPtr &Buf, BufPtr End);
void ParseModuleGlobalInfo ();
/// @brief Parse a symbol table
void ParseSymbolTable (BufPtr &Buf, BufPtr End);
void ParseSymbolTable ();
/// This function parses LLVM functions lazily. It obtains the type of the
/// function and records where the body of the function is in the bytecode
/// buffer. The caller can then use the ParseNextFunction and
/// ParseAllFunctionBodies to get handler events for the functions.
/// @brief Parse functions lazily.
void ParseFunctionLazily (BufPtr &Buf, BufPtr End);
void ParseFunctionLazily ();
/// @brief Parse a function body
void ParseFunctionBody (const Type* FType, BufPtr &Buf, BufPtr EndBuf);
void ParseFunctionBody (const Type* FType);
/// @brief Parse a compaction table
void ParseCompactionTable (BufPtr &Buf, BufPtr End);
void ParseCompactionTable ();
/// @brief Parse global types
void ParseGlobalTypes (BufPtr &Buf, BufPtr End);
void ParseGlobalTypes ();
/// @brief Parse a basic block (for LLVM 1.0 basic block blocks)
void ParseBasicBlock (BufPtr &Buf, BufPtr End, unsigned BlockNo);
void ParseBasicBlock (unsigned BlockNo);
/// @brief parse an instruction list (for post LLVM 1.0 instruction lists
/// with blocks differentiated by terminating instructions.
unsigned ParseInstructionList(BufPtr &Buf, BufPtr End);
unsigned ParseInstructionList();
/// @brief Parse an instruction.
bool ParseInstruction (BufPtr &Buf, BufPtr End,
std::vector<unsigned>& Args);
bool ParseInstruction (std::vector<unsigned>& Args);
/// @brief Parse a constant pool
void ParseConstantPool (BufPtr &Buf, BufPtr End, TypeListTy& List);
void ParseConstantPool (TypeListTy& List);
/// @brief Parse a constant value
void ParseConstantValue (BufPtr &Buf, BufPtr End, unsigned TypeID);
void ParseConstantValue (unsigned TypeID);
/// @brief Parse a block of types.
void ParseTypeConstants (BufPtr &Buf, BufPtr End, TypeListTy &Tab,
unsigned NumEntries);
void ParseTypeConstants (TypeListTy &Tab, unsigned NumEntries);
/// @brief Parse a single type.
const Type *ParseTypeConstant(BufPtr &Buf, BufPtr End);
const Type *ParseTypeConstant();
/// @brief Parse a string constants block
void ParseStringConstants (BufPtr &Buf, BufPtr End, unsigned NumEntries);
void ParseStringConstants (unsigned NumEntries);
/// @}
/// @name Data
/// @{
private:
BufPtr MemStart; ///< Start of the memory buffer
BufPtr MemEnd; ///< End of the memory buffer
BufPtr BlockStart; ///< Start of current block being parsed
BufPtr BlockEnd; ///< End of current block being parsed
BufPtr At; ///< Where we're currently parsing at
bool reportAlignment; ///< Parser should report alignment?
bool reportBlocks; ///< Parser should report blocks?
bool reportVBR; ///< Report VBR compression events
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
@ -219,9 +238,25 @@ private:
private:
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) ;
/// Is there more to parse in the current block?
inline bool moreInBlock();
/// Have we read past the end of the block
inline void checkPastBlockEnd(const char * block_name);
/// Align to 32 bits
inline void align32();
/// Reader interface
inline unsigned read_uint();
inline unsigned read_vbr_uint();
inline uint64_t read_vbr_uint64();
inline int64_t read_vbr_int64();
inline std::string read_str();
inline void read_data(void *Ptr, void *End);
/// Read a block header
inline void readBlock(unsigned &Type, unsigned &Size);
const Type *AbstractBytecodeParser::getType(unsigned ID);
/// getGlobalTableType - This is just like getType, but when a compaction
@ -443,7 +478,8 @@ public:
virtual bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands
std::vector<unsigned>& Operands,
unsigned Length
);
/// @brief Handle the end of a basic block
@ -488,6 +524,16 @@ public:
/// @brief Handle the end of the global constants
virtual void handleGlobalConstantsEnd();
/// @brief Handle an alignment event
virtual void handleAlignment(unsigned numBytes);
virtual void handleBlock(
unsigned BType, ///< The type of block
const unsigned char* StartPtr, ///< The start of the block
unsigned Size ///< The size of the block
);
virtual void handleVBR32(unsigned Size );
virtual void handleVBR64(unsigned Size );
/// @}
};