mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-08-09 11:25:55 +00:00
Add function for computing the edit distance of two arrays.
Accomplished by moving the body of StringRef::edit_distance into a separate function that accepts two ArrayRefs, and making StringRef::edit_distance a wrapper around the new function. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150621 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
102
include/llvm/ADT/edit_distance.h
Normal file
102
include/llvm/ADT/edit_distance.h
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
|
||||||
|
//
|
||||||
|
// The LLVM Compiler Infrastructure
|
||||||
|
//
|
||||||
|
// This file is distributed under the University of Illinois Open Source
|
||||||
|
// License. See LICENSE.TXT for details.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// This file defines a Levenshtein distance function that works for any two
|
||||||
|
// sequences, with each element of each sequence being analogous to a character
|
||||||
|
// in a string.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#ifndef LLVM_ADT_EDIT_DISTANCE_H
|
||||||
|
#define LLVM_ADT_EDIT_DISTANCE_H
|
||||||
|
|
||||||
|
#include "llvm/ADT/ArrayRef.h"
|
||||||
|
#include "llvm/ADT/OwningPtr.h"
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
namespace llvm {
|
||||||
|
|
||||||
|
/// \brief Determine the edit distance between two sequences.
|
||||||
|
///
|
||||||
|
/// \param FromArray the first sequence to compare.
|
||||||
|
///
|
||||||
|
/// \param ToArray the second sequence to compare.
|
||||||
|
///
|
||||||
|
/// \param AllowReplacements whether to allow element replacements (change one
|
||||||
|
/// element into another) as a single operation, rather than as two operations
|
||||||
|
/// (an insertion and a removal).
|
||||||
|
///
|
||||||
|
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
|
||||||
|
/// routine is allowed to compute. If the edit distance will exceed that
|
||||||
|
/// maximum, returns \c MaxEditDistance+1.
|
||||||
|
///
|
||||||
|
/// \returns the minimum number of element insertions, removals, or (if
|
||||||
|
/// \p AllowReplacements is \c true) replacements needed to transform one of
|
||||||
|
/// the given sequences into the other. If zero, the sequences are identical.
|
||||||
|
template<typename T>
|
||||||
|
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
|
||||||
|
bool AllowReplacements = true,
|
||||||
|
unsigned MaxEditDistance = 0) {
|
||||||
|
// The algorithm implemented below is the "classic"
|
||||||
|
// dynamic-programming algorithm for computing the Levenshtein
|
||||||
|
// distance, which is described here:
|
||||||
|
//
|
||||||
|
// http://en.wikipedia.org/wiki/Levenshtein_distance
|
||||||
|
//
|
||||||
|
// Although the algorithm is typically described using an m x n
|
||||||
|
// array, only two rows are used at a time, so this implemenation
|
||||||
|
// just keeps two separate vectors for those two rows.
|
||||||
|
typename ArrayRef<T>::size_type m = FromArray.size();
|
||||||
|
typename ArrayRef<T>::size_type n = ToArray.size();
|
||||||
|
|
||||||
|
const unsigned SmallBufferSize = 64;
|
||||||
|
unsigned SmallBuffer[SmallBufferSize];
|
||||||
|
llvm::OwningArrayPtr<unsigned> Allocated;
|
||||||
|
unsigned *Previous = SmallBuffer;
|
||||||
|
if (2*(n + 1) > SmallBufferSize) {
|
||||||
|
Previous = new unsigned [2*(n+1)];
|
||||||
|
Allocated.reset(Previous);
|
||||||
|
}
|
||||||
|
unsigned *Current = Previous + (n + 1);
|
||||||
|
|
||||||
|
for (unsigned i = 0; i <= n; ++i)
|
||||||
|
Previous[i] = i;
|
||||||
|
|
||||||
|
for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
|
||||||
|
Current[0] = y;
|
||||||
|
unsigned BestThisRow = Current[0];
|
||||||
|
|
||||||
|
for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
|
||||||
|
if (AllowReplacements) {
|
||||||
|
Current[x] = std::min(
|
||||||
|
Previous[x-1] + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
|
||||||
|
std::min(Current[x-1], Previous[x])+1);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (FromArray[y-1] == ToArray[x-1]) Current[x] = Previous[x-1];
|
||||||
|
else Current[x] = std::min(Current[x-1], Previous[x]) + 1;
|
||||||
|
}
|
||||||
|
BestThisRow = std::min(BestThisRow, Current[x]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (MaxEditDistance && BestThisRow > MaxEditDistance)
|
||||||
|
return MaxEditDistance + 1;
|
||||||
|
|
||||||
|
unsigned *tmp = Current;
|
||||||
|
Current = Previous;
|
||||||
|
Previous = tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned Result = Previous[n];
|
||||||
|
return Result;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // End llvm namespace
|
||||||
|
|
||||||
|
#endif
|
@@ -10,6 +10,7 @@
|
|||||||
#include "llvm/ADT/StringRef.h"
|
#include "llvm/ADT/StringRef.h"
|
||||||
#include "llvm/ADT/APInt.h"
|
#include "llvm/ADT/APInt.h"
|
||||||
#include "llvm/ADT/OwningPtr.h"
|
#include "llvm/ADT/OwningPtr.h"
|
||||||
|
#include "llvm/ADT/edit_distance.h"
|
||||||
#include <bitset>
|
#include <bitset>
|
||||||
|
|
||||||
using namespace llvm;
|
using namespace llvm;
|
||||||
@@ -84,57 +85,10 @@ int StringRef::compare_numeric(StringRef RHS) const {
|
|||||||
unsigned StringRef::edit_distance(llvm::StringRef Other,
|
unsigned StringRef::edit_distance(llvm::StringRef Other,
|
||||||
bool AllowReplacements,
|
bool AllowReplacements,
|
||||||
unsigned MaxEditDistance) {
|
unsigned MaxEditDistance) {
|
||||||
// The algorithm implemented below is the "classic"
|
return llvm::ComputeEditDistance(
|
||||||
// dynamic-programming algorithm for computing the Levenshtein
|
llvm::ArrayRef<char>(data(), size()),
|
||||||
// distance, which is described here:
|
llvm::ArrayRef<char>(Other.data(), Other.size()),
|
||||||
//
|
AllowReplacements, MaxEditDistance);
|
||||||
// http://en.wikipedia.org/wiki/Levenshtein_distance
|
|
||||||
//
|
|
||||||
// Although the algorithm is typically described using an m x n
|
|
||||||
// array, only two rows are used at a time, so this implemenation
|
|
||||||
// just keeps two separate vectors for those two rows.
|
|
||||||
size_type m = size();
|
|
||||||
size_type n = Other.size();
|
|
||||||
|
|
||||||
const unsigned SmallBufferSize = 64;
|
|
||||||
unsigned SmallBuffer[SmallBufferSize];
|
|
||||||
llvm::OwningArrayPtr<unsigned> Allocated;
|
|
||||||
unsigned *previous = SmallBuffer;
|
|
||||||
if (2*(n + 1) > SmallBufferSize) {
|
|
||||||
previous = new unsigned [2*(n+1)];
|
|
||||||
Allocated.reset(previous);
|
|
||||||
}
|
|
||||||
unsigned *current = previous + (n + 1);
|
|
||||||
|
|
||||||
for (unsigned i = 0; i <= n; ++i)
|
|
||||||
previous[i] = i;
|
|
||||||
|
|
||||||
for (size_type y = 1; y <= m; ++y) {
|
|
||||||
current[0] = y;
|
|
||||||
unsigned BestThisRow = current[0];
|
|
||||||
|
|
||||||
for (size_type x = 1; x <= n; ++x) {
|
|
||||||
if (AllowReplacements) {
|
|
||||||
current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
|
|
||||||
min(current[x-1], previous[x])+1);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
|
|
||||||
else current[x] = min(current[x-1], previous[x]) + 1;
|
|
||||||
}
|
|
||||||
BestThisRow = min(BestThisRow, current[x]);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (MaxEditDistance && BestThisRow > MaxEditDistance)
|
|
||||||
return MaxEditDistance + 1;
|
|
||||||
|
|
||||||
unsigned *tmp = current;
|
|
||||||
current = previous;
|
|
||||||
previous = tmp;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned Result = previous[n];
|
|
||||||
return Result;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
Reference in New Issue
Block a user