mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
New file for supporting abstract types
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@502 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c9744e7f26
commit
04890ad7fb
134
include/llvm/AbstractTypeUser.h
Normal file
134
include/llvm/AbstractTypeUser.h
Normal file
@ -0,0 +1,134 @@
|
||||
//===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface -----*- C++ -*--=//
|
||||
//
|
||||
// The AbstractTypeUser class is an interface to be implemented by classes who
|
||||
// could possible use an abstract type. Abstract types are denoted by the
|
||||
// isAbstract flag set to true in the Type class. These are classes that
|
||||
// contain an Opaque type in their structure somehow.
|
||||
//
|
||||
// Classes must implement this interface so that they may be notified when an
|
||||
// abstract type is resolved. Abstract types may be resolved into more concrete
|
||||
// types through: linking, parsing, and bytecode reading. When this happens,
|
||||
// all of the users of the type must be updated to reference the new, more
|
||||
// concrete type. They are notified through the AbstractTypeUser interface.
|
||||
//
|
||||
// In addition to this, AbstractTypeUsers must keep the use list of the
|
||||
// potentially abstract type that they reference up-to-date. To do this in a
|
||||
// nice, transparent way, the PATypeHandle class is used to hold "Potentially
|
||||
// Abstract Types", and keep the use list of the abstract types up-to-date.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ABSTRACT_TYPE_USER_H
|
||||
#define LLVM_ABSTRACT_TYPE_USER_H
|
||||
|
||||
class Type;
|
||||
class DerivedType;
|
||||
|
||||
class AbstractTypeUser {
|
||||
protected:
|
||||
virtual ~AbstractTypeUser() {} // Derive from me
|
||||
public:
|
||||
|
||||
// refineAbstractType - The callback method invoked when an abstract type
|
||||
// has been found to be more concrete. A class must override this method to
|
||||
// update its internal state to reference NewType instead of OldType. Soon
|
||||
// after this method is invoked, OldType shall be deleted, so referencing it
|
||||
// is quite unwise.
|
||||
//
|
||||
virtual void refineAbstractType(const DerivedType *OldTy,
|
||||
const Type *NewTy) = 0;
|
||||
};
|
||||
|
||||
|
||||
// PATypeHandle - Handle to a Type subclass. This class is parameterized so
|
||||
// that users can have handles to MethodType's that are still specialized, for
|
||||
// example. This class is a simple class used to keep the use list of abstract
|
||||
// types up-to-date.
|
||||
//
|
||||
template <class TypeSubClass>
|
||||
class PATypeHandle {
|
||||
const TypeSubClass *Ty;
|
||||
AbstractTypeUser * const User;
|
||||
|
||||
// These functions are defined at the bottom of Type.h. See the comment there
|
||||
// for justification.
|
||||
inline void addUser();
|
||||
inline void removeUser();
|
||||
public:
|
||||
// ctor - Add use to type if abstract. Note that Ty must not be null
|
||||
inline PATypeHandle(const TypeSubClass *ty, AbstractTypeUser *user)
|
||||
: Ty(ty), User(user) {
|
||||
addUser();
|
||||
}
|
||||
|
||||
// ctor - Add use to type if abstract.
|
||||
inline PATypeHandle(const PATypeHandle &T) : Ty(T.Ty), User(T.User) {
|
||||
addUser();
|
||||
}
|
||||
|
||||
// dtor - Remove reference to type...
|
||||
inline ~PATypeHandle() { removeUser(); }
|
||||
|
||||
// Automatic casting operator so that the handle may be used naturally
|
||||
inline operator const TypeSubClass *() const { return Ty; }
|
||||
inline const TypeSubClass *get() const { return Ty; }
|
||||
|
||||
// operator= - Allow assignment to handle
|
||||
inline const TypeSubClass *operator=(const TypeSubClass *ty) {
|
||||
if (Ty != ty) { // Ensure we don't accidentally drop last ref to Ty
|
||||
removeUser();
|
||||
Ty = ty;
|
||||
addUser();
|
||||
}
|
||||
return Ty;
|
||||
}
|
||||
|
||||
// operator= - Allow assignment to handle
|
||||
inline const TypeSubClass *operator=(const PATypeHandle &T) {
|
||||
return operator=(T.Ty);
|
||||
}
|
||||
|
||||
inline bool operator==(const TypeSubClass *ty) {
|
||||
return Ty == ty;
|
||||
}
|
||||
|
||||
// operator-> - Allow user to dereference handle naturally...
|
||||
inline const TypeSubClass *operator->() const { return Ty; }
|
||||
};
|
||||
|
||||
|
||||
// PATypeHolder - Holder class for a potentially abstract type. This functions
|
||||
// as both a handle (as above) and an AbstractTypeUser. It uses the callback to
|
||||
// keep its pointer member updated to the current version of the type.
|
||||
//
|
||||
template <class TypeSC>
|
||||
class PATypeHolder : public AbstractTypeUser, public PATypeHandle<TypeSC> {
|
||||
public:
|
||||
inline PATypeHolder(const TypeSC *ty) : PATypeHandle<TypeSC>(ty, this) {}
|
||||
inline PATypeHolder(const PATypeHolder &T)
|
||||
: AbstractTypeUser(T), PATypeHandle<TypeSC>(T, this) {}
|
||||
|
||||
// refineAbstractType - All we do is update our PATypeHandle member to point
|
||||
// to the new type.
|
||||
//
|
||||
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
||||
assert(get() == OldTy && "Can't refine to unknown value!");
|
||||
PATypeHandle<TypeSC>::operator=((const TypeSC*)NewTy);
|
||||
}
|
||||
|
||||
// operator= - Allow assignment to handle
|
||||
inline const TypeSC *operator=(const TypeSC *ty) {
|
||||
return PATypeHandle<TypeSC>::operator=(ty);
|
||||
}
|
||||
|
||||
// operator= - Allow assignment to handle
|
||||
inline const TypeSC *operator=(const PATypeHandle<TypeSC> &T) {
|
||||
return PATypeHandle<TypeSC>::operator=(T);
|
||||
}
|
||||
inline const TypeSC *operator=(const PATypeHolder<TypeSC> &H) {
|
||||
return PATypeHandle<TypeSC>::operator=(H);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user