Implement the first half of LiveDebugVariables.

Scan the MachineFunction for DBG_VALUE instructions, and replace them with a
data structure similar to LiveIntervals. The live range of a DBG_VALUE is
determined by propagating it down the dominator tree until a new DBG_VALUE is
found. When a DBG_VALUE lives in a register, its live range is confined to the
live range of the register's value.

LiveDebugVariables runs before coalescing, so DBG_VALUEs are not artificially
extended when registers are joined.

The missing half will recreate DBG_VALUE instructions from the intervals when
register allocation is complete.

The pass is disabled by default. It can be enabled with the temporary command
line option -live-debug-variables.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120636 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2010-12-02 00:37:37 +00:00
parent dff84b0325
commit 0613516b16
5 changed files with 529 additions and 6 deletions

View File

@ -773,6 +773,20 @@ namespace llvm {
};
// Specialize IntervalMapInfo for half-open slot index intervals.
template <typename> struct IntervalMapInfo;
template <> struct IntervalMapInfo<SlotIndex> {
static inline bool startLess(const SlotIndex &x, const SlotIndex &a) {
return x < a;
}
static inline bool stopLess(const SlotIndex &b, const SlotIndex &x) {
return b <= x;
}
static inline bool adjacent(const SlotIndex &a, const SlotIndex &b) {
return a == b;
}
};
}
#endif // LLVM_CODEGEN_LIVEINDEX_H

View File

@ -19,32 +19,535 @@
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "livedebug"
#include "LiveDebugVariables.h"
#include "llvm/Constants.h"
#include "llvm/Metadata.h"
#include "llvm/Value.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
static cl::opt<bool>
EnableLDV("live-debug-variables",
cl::desc("Enable the live debug variables pass"), cl::Hidden);
char LiveDebugVariables::ID = 0;
INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars",
"Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars",
"Debug Variable Analysis", false, false)
void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineDominatorTree>();
AU.addRequiredTransitive<LiveIntervals>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}
bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
return false;
/// Location - All the different places a user value can reside.
/// Note that this includes immediate values that technically aren't locations.
namespace {
struct Location {
/// kind - What kind of location is this?
enum Kind {
locUndef = 0,
locImm = 0x80000000,
locFPImm
};
/// Kind - One of the following:
/// 1. locUndef
/// 2. Register number (physical or virtual), data.SubIdx is the subreg index.
/// 3. ~Frame index, data.Offset is the offset.
/// 4. locImm, data.ImmVal is the constant integer value.
/// 5. locFPImm, data.CFP points to the floating point constant.
unsigned Kind;
/// Data - Extra data about location.
union {
unsigned SubIdx; ///< For virtual registers.
int64_t Offset; ///< For frame indices.
int64_t ImmVal; ///< For locImm.
const ConstantFP *CFP; ///< For locFPImm.
} Data;
Location(const MachineOperand &MO) {
switch(MO.getType()) {
case MachineOperand::MO_Register:
Kind = MO.getReg();
Data.SubIdx = MO.getSubReg();
return;
case MachineOperand::MO_Immediate:
Kind = locImm;
Data.ImmVal = MO.getImm();
return;
case MachineOperand::MO_FPImmediate:
Kind = locFPImm;
Data.CFP = MO.getFPImm();
return;
case MachineOperand::MO_FrameIndex:
Kind = ~MO.getIndex();
// FIXME: MO_FrameIndex should support an offset.
Data.Offset = 0;
return;
default:
Kind = locUndef;
return;
}
}
bool operator==(const Location &RHS) const {
if (Kind != RHS.Kind)
return false;
switch (Kind) {
case locUndef:
return true;
case locImm:
return Data.ImmVal == RHS.Data.ImmVal;
case locFPImm:
return Data.CFP == RHS.Data.CFP;
default:
if (isReg())
return Data.SubIdx == RHS.Data.SubIdx;
else
return Data.Offset == RHS.Data.Offset;
}
}
/// isUndef - is this the singleton undef?
bool isUndef() const { return Kind == locUndef; }
/// isReg - is this a register location?
bool isReg() const { return Kind && Kind < locImm; }
void print(raw_ostream&, const TargetRegisterInfo*);
};
}
/// LocMap - Map of where a user value is live, and its location.
typedef IntervalMap<SlotIndex, unsigned, 4> LocMap;
/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they refer to the same variable, or if they are
/// held by the same virtual register. The equivalence class is the transitive
/// closure of that relation.
namespace {
class UserValue {
const MDNode *variable; ///< The debug info variable we are part of.
unsigned offset; ///< Byte offset into variable.
UserValue *leader; ///< Equivalence class leader.
UserValue *next; ///< Next value in equivalence class, or null.
/// Numbered locations referenced by locmap.
SmallVector<Location, 4> locations;
/// Map of slot indices where this value is live.
LocMap locInts;
public:
/// UserValue - Create a new UserValue.
UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc)
: variable(var), offset(o), leader(this), next(0), locInts(alloc)
{}
/// getLeader - Get the leader of this value's equivalence class.
UserValue *getLeader() {
UserValue *l = leader;
while (l != l->leader)
l = l->leader;
return leader = l;
}
/// getNext - Return the next UserValue in the equivalence class.
UserValue *getNext() const { return next; }
/// match - Does this UserValue match the aprameters?
bool match(const MDNode *Var, unsigned Offset) const {
return Var == variable && Offset == offset;
}
/// merge - Merge equivalence classes.
static UserValue *merge(UserValue *L1, UserValue *L2) {
L2 = L2->getLeader();
if (!L1)
return L2;
L1 = L1->getLeader();
if (L1 == L2)
return L1;
// Splice L2 before L1's members.
UserValue *End = L2;
while (End->next)
End->leader = L1, End = End->next;
End->leader = L1;
End->next = L1->next;
L1->next = L2;
return L1;
}
/// getLocationNo - Return the location number that matches Loc.
unsigned getLocationNo(Location Loc) {
if (Loc.isUndef())
return ~0u;
unsigned n = std::find(locations.begin(), locations.end(), Loc) -
locations.begin();
if (n == locations.size())
locations.push_back(Loc);
return n;
}
/// addDef - Add a definition point to this value.
void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
// Add a singular (Idx,Idx) -> Loc mapping.
LocMap::iterator I = locInts.find(Idx);
if (!I.valid() || I.start() != Idx)
I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO));
}
/// extendDef - Extend the current definition as far as possible down the
/// dominator tree. Stop when meeting an existing def or when leaving the live
/// range of VNI.
/// @param Idx Starting point for the definition.
/// @param LocNo Location number to propagate.
/// @param LI Restrict liveness to where LI has the value VNI. May be null.
/// @param VNI When LI is not null, this is the value to restrict to.
/// @param LIS Live intervals analysis.
/// @param MDT Dominator tree.
void extendDef(SlotIndex Idx, unsigned LocNo,
LiveInterval *LI, const VNInfo *VNI,
LiveIntervals &LIS, MachineDominatorTree &MDT);
/// computeIntervals - Compute the live intervals of all locations after
/// collecting all their def points.
void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT);
void print(raw_ostream&, const TargetRegisterInfo*);
};
} // namespace
/// LDVImpl - Implementation of the LiveDebugVariables pass.
namespace {
class LDVImpl {
LiveDebugVariables &pass;
LocMap::Allocator allocator;
MachineFunction *MF;
LiveIntervals *LIS;
MachineDominatorTree *MDT;
const TargetRegisterInfo *TRI;
/// userValues - All allocated UserValue instances.
SmallVector<UserValue*, 8> userValues;
/// Map virtual register to eq class leader.
typedef DenseMap<unsigned, UserValue*> VRMap;
VRMap virtRegMap;
/// Map user variable to eq class leader.
typedef DenseMap<const MDNode *, UserValue*> UVMap;
UVMap userVarMap;
/// getUserValue - Find or create a UserValue.
UserValue *getUserValue(const MDNode *Var, unsigned Offset);
/// mapVirtReg - Map virtual register to an equivalence class.
void mapVirtReg(unsigned VirtReg, UserValue *EC);
/// handleDebugValue - Add DBG_VALUE instruction to our maps.
/// @param MI DBG_VALUE instruction
/// @param Idx Last valid SLotIndex before instruction.
/// @return True if the DBG_VALUE instruction should be deleted.
bool handleDebugValue(MachineInstr *MI, SlotIndex Idx);
/// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
/// a UserValue def for each instruction.
/// @param mf MachineFunction to be scanned.
/// @return True if any debug values were found.
bool collectDebugValues(MachineFunction &mf);
/// computeIntervals - Compute the live intervals of all user values after
/// collecting all their def points.
void computeIntervals();
public:
LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
bool runOnMachineFunction(MachineFunction &mf);
/// clear - Relase all memory.
void clear() {
DeleteContainerPointers(userValues);
userValues.clear();
virtRegMap.clear();
userVarMap.clear();
}
void print(raw_ostream&);
};
} // namespace
void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
switch (Kind) {
case locUndef:
OS << "undef";
return;
case locImm:
OS << "int:" << Data.ImmVal;
return;
case locFPImm:
OS << "fp:" << Data.CFP->getValueAPF().convertToDouble();
return;
default:
if (isReg()) {
if (TargetRegisterInfo::isVirtualRegister(Kind)) {
OS << "%reg" << Kind;
if (Data.SubIdx)
OS << ':' << TRI->getSubRegIndexName(Data.SubIdx);
} else
OS << '%' << TRI->getName(Kind);
} else {
OS << "fi#" << ~Kind;
if (Data.Offset)
OS << '+' << Data.Offset;
}
return;
}
}
void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
if (const MDString *MDS = dyn_cast<MDString>(variable->getOperand(2)))
OS << "!\"" << MDS->getString() << "\"\t";
if (offset)
OS << '+' << offset;
for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
OS << " [" << I.start() << ';' << I.stop() << "):";
if (I.value() == ~0u)
OS << "undef";
else
OS << I.value();
}
for (unsigned i = 0, e = locations.size(); i != e; ++i) {
OS << " Loc" << i << '=';
locations[i].print(OS, TRI);
}
OS << '\n';
}
void LDVImpl::print(raw_ostream &OS) {
OS << "********** DEBUG VARIABLES **********\n";
for (unsigned i = 0, e = userValues.size(); i != e; ++i)
userValues[i]->print(OS, TRI);
}
UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) {
UserValue *&Leader = userVarMap[Var];
if (Leader) {
UserValue *UV = Leader->getLeader();
Leader = UV;
for (; UV; UV = UV->getNext())
if (UV->match(Var, Offset))
return UV;
}
UserValue *UV = new UserValue(Var, Offset, allocator);
userValues.push_back(UV);
Leader = UserValue::merge(Leader, UV);
return UV;
}
void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
UserValue *&Leader = virtRegMap[VirtReg];
Leader = UserValue::merge(Leader, EC);
}
bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
// DBG_VALUE loc, offset, variable
if (MI->getNumOperands() != 3 ||
!MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) {
DEBUG(dbgs() << "Can't handle " << *MI);
return false;
}
// Get or create the UserValue for (variable,offset).
unsigned Offset = MI->getOperand(1).getImm();
const MDNode *Var = MI->getOperand(2).getMetadata();
UserValue *UV = getUserValue(Var, Offset);
// If the location is a virtual register, make sure it is mapped.
if (MI->getOperand(0).isReg()) {
unsigned Reg = MI->getOperand(0).getReg();
if (Reg && TargetRegisterInfo::isVirtualRegister(Reg))
mapVirtReg(Reg, UV);
}
UV->addDef(Idx, MI->getOperand(0));
return true;
}
bool LDVImpl::collectDebugValues(MachineFunction &mf) {
bool Changed = false;
for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
++MFI) {
MachineBasicBlock *MBB = MFI;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
MBBI != MBBE;) {
if (!MBBI->isDebugValue()) {
++MBBI;
continue;
}
// DBG_VALUE has no slot index, use the previous instruction instead.
SlotIndex Idx = MBBI == MBB->begin() ?
LIS->getMBBStartIdx(MBB) :
LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex();
// Handle consecutive DBG_VALUE instructions with the same slot index.
do {
if (handleDebugValue(MBBI, Idx)) {
MBBI = MBB->erase(MBBI);
Changed = true;
} else
++MBBI;
} while (MBBI != MBBE && MBBI->isDebugValue());
}
}
return Changed;
}
void UserValue::extendDef(SlotIndex Idx, unsigned LocNo,
LiveInterval *LI, const VNInfo *VNI,
LiveIntervals &LIS, MachineDominatorTree &MDT) {
SmallVector<SlotIndex, 16> Todo;
Todo.push_back(Idx);
do {
SlotIndex Start = Todo.pop_back_val();
MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
SlotIndex Stop = LIS.getMBBEndIdx(MBB);
LocMap::iterator I = locInts.find(Idx);
// Limit to VNI's live range.
bool ToEnd = true;
if (LI && VNI) {
LiveRange *Range = LI->getLiveRangeContaining(Start);
if (!Range || Range->valno != VNI)
continue;
if (Range->end < Stop)
Stop = Range->end, ToEnd = false;
}
// There could already be a short def at Start.
if (I.valid() && I.start() <= Start) {
// Stop when meeting a different location or an already extended interval.
Start = Start.getNextSlot();
if (I.value() != LocNo || I.stop() != Start)
continue;
// This is a one-slot placeholder. Just skip it.
++I;
}
// Limited by the next def.
if (I.valid() && I.start() < Stop)
Stop = I.start(), ToEnd = false;
if (Start >= Stop)
continue;
I.insert(Start, Stop, LocNo);
// If we extended to the MBB end, propagate down the dominator tree.
if (!ToEnd)
continue;
const std::vector<MachineDomTreeNode*> &Children =
MDT.getNode(MBB)->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock()));
} while (!Todo.empty());
}
void
UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) {
SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;
// Collect all defs to be extended (Skipping undefs).
for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
if (I.value() != ~0u)
Defs.push_back(std::make_pair(I.start(), I.value()));
for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
SlotIndex Idx = Defs[i].first;
unsigned LocNo = Defs[i].second;
const Location &Loc = locations[LocNo];
// Register locations are constrained to where the register value is live.
if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) {
LiveInterval *LI = &LIS.getInterval(Loc.Kind);
const VNInfo *VNI = LI->getVNInfoAt(Idx);
extendDef(Idx, LocNo, LI, VNI, LIS, MDT);
} else
extendDef(Idx, LocNo, 0, 0, LIS, MDT);
}
// Finally, erase all the undefs.
for (LocMap::iterator I = locInts.begin(); I.valid();)
if (I.value() == ~0u)
I.erase();
else
++I;
}
void LDVImpl::computeIntervals() {
for (unsigned i = 0, e = userValues.size(); i != e; ++i)
userValues[i]->computeIntervals(*LIS, *MDT);
}
bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
LIS = &pass.getAnalysis<LiveIntervals>();
MDT = &pass.getAnalysis<MachineDominatorTree>();
TRI = mf.getTarget().getRegisterInfo();
clear();
DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
<< ((Value*)mf.getFunction())->getName()
<< " **********\n");
bool Changed = collectDebugValues(mf);
computeIntervals();
DEBUG(print(dbgs()));
return Changed;
}
bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
if (!EnableLDV)
return false;
if (!pImpl)
pImpl = new LDVImpl(this);
return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}
void LiveDebugVariables::releaseMemory() {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->clear();
}
LiveDebugVariables::~LiveDebugVariables() {
if (pImpl)
delete static_cast<LDVImpl*>(pImpl);
}

View File

@ -31,6 +31,7 @@ public:
static char ID; // Pass identification, replacement for typeid
LiveDebugVariables();
~LiveDebugVariables();
/// renameRegister - Move any user variables in OldReg to NewReg:SubIdx.
/// @param OldReg Old virtual register that is going away.
@ -45,9 +46,8 @@ public:
private:
/// runOnMachineFunction - Analyze and remove DBG_VALUE instructions.
virtual bool runOnMachineFunction(MachineFunction &);
virtual void releaseMemory();
virtual void getAnalysisUsage(AnalysisUsage &) const;
};

View File

@ -15,6 +15,7 @@
#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
@ -68,6 +69,7 @@ INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing, RegisterCoalescer,
"simple-register-coalescing", "Simple Register Coalescing",
false, false, true)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
@ -85,6 +87,8 @@ void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
@ -1626,6 +1630,7 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
li_ = &getAnalysis<LiveIntervals>();
ldv_ = &getAnalysis<LiveDebugVariables>();
AA = &getAnalysis<AliasAnalysis>();
loopInfo = &getAnalysis<MachineLoopInfo>();

View File

@ -21,7 +21,7 @@
namespace llvm {
class SimpleRegisterCoalescing;
class LiveVariables;
class LiveDebugVariables;
class TargetRegisterInfo;
class TargetInstrInfo;
class VirtRegMap;
@ -44,6 +44,7 @@ namespace llvm {
const TargetRegisterInfo* tri_;
const TargetInstrInfo* tii_;
LiveIntervals *li_;
LiveDebugVariables *ldv_;
const MachineLoopInfo* loopInfo;
AliasAnalysis *AA;