From 090697321b32fe010db07eb03b6a7af94d8caebd Mon Sep 17 00:00:00 2001 From: Bob Wilson Date: Thu, 27 Oct 2011 15:47:25 +0000 Subject: [PATCH] Revert Duncan's r143028 expression folding which appears to be the culprit behind a compile failure on 483.xalancbmk. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143102 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Analysis/ValueTracking.cpp | 50 ++----------------------- test/Transforms/InstSimplify/compare.ll | 31 --------------- 2 files changed, 4 insertions(+), 77 deletions(-) diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 9ea27036c8f..9a234c068b4 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -201,36 +201,9 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - bool isKnownNegative = false; - bool isKnownNonNegative = false; - // If the multiplication is known not to overflow, compute the sign bit. - if (Mask.isNegative() && cast(I)->hasNoSignedWrap()) { - Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); - if (Op1 == Op2) { - // The product of a number with itself is non-negative. - isKnownNonNegative = true; - } else { - bool isKnownNonNegative1 = KnownZero.isNegative(); - bool isKnownNonNegative2 = KnownZero2.isNegative(); - bool isKnownNegative1 = KnownOne.isNegative(); - bool isKnownNegative2 = KnownOne2.isNegative(); - // The product of two numbers with the same sign is non-negative. - isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || - (isKnownNonNegative1 && isKnownNonNegative2); - // The product of a negative number and a non-negative number is either - // negative or zero. - isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && - isKnownNonZero(Op2, TD, Depth)) || - (isKnownNegative2 && isKnownNonNegative1 && - isKnownNonZero(Op1, TD, Depth)); - assert(!(isKnownNegative && isKnownNonNegative) && - "Sign bit both zero and one?"); - } - } - + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the @@ -247,12 +220,6 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; - - if (isKnownNonNegative) - KnownZero.setBit(BitWidth - 1); - else if (isKnownNegative) - KnownOne.setBit(BitWidth - 1); - return; } case Instruction::UDiv: { @@ -817,7 +784,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { } // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ >= MaxDepth) + if (Depth++ == MaxDepth) return false; unsigned BitWidth = getBitWidth(V->getType(), TD); @@ -901,15 +868,6 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) return true; } - // X * Y. - else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { - BinaryOperator *BO = cast(V); - // If X and Y are non-zero then so is X * Y as long as the multiplication - // does not overflow. - if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && - isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) - return true; - } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (SelectInst *SI = dyn_cast(V)) { if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && diff --git a/test/Transforms/InstSimplify/compare.ll b/test/Transforms/InstSimplify/compare.ll index 3ece1189025..2cbd641a742 100644 --- a/test/Transforms/InstSimplify/compare.ll +++ b/test/Transforms/InstSimplify/compare.ll @@ -323,34 +323,3 @@ define i1 @and1(i32 %X) { ret i1 %B ; CHECK: ret i1 false } - -define i1 @mul1(i32 %X) { -; CHECK: @mul1 -; Square of a non-zero number is non-zero if there is no overflow. - %Y = or i32 %X, 1 - %M = mul nuw i32 %Y, %Y - %C = icmp eq i32 %M, 0 - ret i1 %C -; CHECK: ret i1 false -} - -define i1 @mul2(i32 %X) { -; CHECK: @mul2 -; Square of a non-zero number is positive if there is no signed overflow. - %Y = or i32 %X, 1 - %M = mul nsw i32 %Y, %Y - %C = icmp sgt i32 %M, 0 - ret i1 %C -; CHECK: ret i1 true -} - -define i1 @mul3(i32 %X, i32 %Y) { -; CHECK: @mul3 -; Product of non-negative numbers is non-negative if there is no signed overflow. - %XX = mul nsw i32 %X, %X - %YY = mul nsw i32 %Y, %Y - %M = mul nsw i32 %XX, %YY - %C = icmp sge i32 %M, 0 - ret i1 %C -; CHECK: ret i1 true -}