Add a MachO-specific "mode" to llvm-objdump, that, if enabled, gathers additional information that are only available on MachO.

- It can take FunctionStarts from a binary to find entry points more accurately.
- Symbol offsets in executables are correct now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140028 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2011-09-19 17:56:04 +00:00
parent a182be9b6c
commit 0b8b771e9f
6 changed files with 677 additions and 211 deletions

View File

@ -8,5 +8,6 @@ set(LLVM_LINK_COMPONENTS
add_llvm_tool(llvm-objdump
llvm-objdump.cpp
MachODump.cpp
MCFunction.cpp
)

View File

@ -30,48 +30,77 @@ MCFunction
MCFunction::createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm,
const MemoryObject &Region, uint64_t Start,
uint64_t End, const MCInstrAnalysis *Ana,
raw_ostream &DebugOut) {
raw_ostream &DebugOut,
SmallVectorImpl<uint64_t> &Calls) {
std::vector<MCDecodedInst> Instructions;
std::set<uint64_t> Splits;
Splits.insert(Start);
std::vector<MCDecodedInst> Instructions;
uint64_t Size;
// Disassemble code and gather basic block split points.
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, Region, Index, DebugOut, nulls())) {
if (Ana->isBranch(Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst, Index, Size);
// FIXME: Distinguish relocations from nop jumps.
if (targ != -1ULL && (targ == Index+Size || targ >= End)) {
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
continue; // Skip branches that leave the function.
}
if (targ != -1ULL)
Splits.insert(targ);
Splits.insert(Index+Size);
} else if (Ana->isReturn(Inst)) {
Splits.insert(Index+Size);
}
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
} else {
errs() << "warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
MCFunction f(Name);
// Create basic blocks.
{
DenseSet<uint64_t> VisitedInsts;
SmallVector<uint64_t, 16> WorkList;
WorkList.push_back(Start);
// Disassemble code and gather basic block split points.
while (!WorkList.empty()) {
uint64_t Index = WorkList.pop_back_val();
if (VisitedInsts.find(Index) != VisitedInsts.end())
continue;
for (;Index < End; Index += Size) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, Region, Index, DebugOut, nulls())){
if (Ana->isBranch(Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst, Index, Size);
if (targ != -1ULL && targ == Index+Size) {
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
VisitedInsts.insert(Index);
continue;
}
if (targ != -1ULL) {
Splits.insert(targ);
WorkList.push_back(targ);
WorkList.push_back(Index+Size);
}
Splits.insert(Index+Size);
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
VisitedInsts.insert(Index);
break;
} else if (Ana->isReturn(Inst)) {
Splits.insert(Index+Size);
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
VisitedInsts.insert(Index);
break;
} else if (Ana->isCall(Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst, Index, Size);
if (targ != -1ULL && targ != Index+Size) {
Calls.push_back(targ);
}
}
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
VisitedInsts.insert(Index);
} else {
VisitedInsts.insert(Index);
errs().write_hex(Index) << ": warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
}
std::sort(Instructions.begin(), Instructions.end());
// Create basic blocks.
unsigned ii = 0, ie = Instructions.size();
for (std::set<uint64_t>::iterator spi = Splits.begin(),
spe = Splits.end(); spi != spe; ++spi) {
spe = llvm::prior(Splits.end()); spi != spe; ++spi) {
MCBasicBlock BB;
uint64_t BlockEnd = llvm::next(spi) == spe ? End : *llvm::next(spi);
uint64_t BlockEnd = *llvm::next(spi);
// Add instructions to the BB.
for (; ii != ie; ++ii) {
if (Instructions[ii].Address < *spi ||
@ -82,6 +111,8 @@ MCFunction::createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm,
f.addBlock(*spi, BB);
}
std::sort(f.Blocks.begin(), f.Blocks.end());
// Calculate successors of each block.
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
MCBasicBlock &BB = i->second;
@ -94,16 +125,16 @@ MCFunction::createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm,
// Indirect branch. Bail and add all blocks of the function as a
// successor.
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i)
BB.addSucc(&i->second);
BB.addSucc(i->first);
} else if (targ != Inst.Address+Inst.Size)
BB.addSucc(&f.getBlockAtAddress(targ));
BB.addSucc(targ);
// Conditional branches can also fall through to the next block.
if (Ana->isConditionalBranch(Inst.Inst) && llvm::next(i) != e)
BB.addSucc(&llvm::next(i)->second);
BB.addSucc(llvm::next(i)->first);
} else {
// No branch. Fall through to the next block.
if (!Ana->isReturn(Inst.Inst) && llvm::next(i) != e)
BB.addSucc(&llvm::next(i)->second);
BB.addSucc(llvm::next(i)->first);
}
}

View File

@ -12,8 +12,11 @@
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECTDUMP_MCFUNCTION_H
#define LLVM_OBJECTDUMP_MCFUNCTION_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/MC/MCInst.h"
#include <map>
@ -31,15 +34,20 @@ struct MCDecodedInst {
uint64_t Size;
MCInst Inst;
MCDecodedInst() {}
MCDecodedInst(uint64_t Address, uint64_t Size, MCInst Inst)
: Address(Address), Size(Size), Inst(Inst) {}
bool operator<(const MCDecodedInst &RHS) const {
return Address < RHS.Address;
}
};
/// MCBasicBlock - Consists of multiple MCDecodedInsts and a list of successing
/// MCBasicBlocks.
class MCBasicBlock {
SmallVector<MCDecodedInst, 8> Insts;
typedef SmallPtrSet<MCBasicBlock*, 8> SetTy;
std::vector<MCDecodedInst> Insts;
typedef DenseSet<uint64_t> SetTy;
SetTy Succs;
public:
ArrayRef<MCDecodedInst> getInsts() const { return Insts; }
@ -48,10 +56,14 @@ public:
succ_iterator succ_begin() const { return Succs.begin(); }
succ_iterator succ_end() const { return Succs.end(); }
bool contains(MCBasicBlock *BB) const { return Succs.count(BB); }
bool contains(uint64_t Addr) const { return Succs.count(Addr); }
void addInst(const MCDecodedInst &Inst) { Insts.push_back(Inst); }
void addSucc(MCBasicBlock *BB) { Succs.insert(BB); }
void addSucc(uint64_t Addr) { Succs.insert(Addr); }
bool operator<(const MCBasicBlock &RHS) const {
return Insts.size() < RHS.Insts.size();
}
};
/// MCFunction - Represents a named function in machine code, containing
@ -59,7 +71,7 @@ public:
class MCFunction {
const StringRef Name;
// Keep BBs sorted by address.
typedef std::map<uint64_t, MCBasicBlock> MapTy;
typedef std::vector<std::pair<uint64_t, MCBasicBlock> > MapTy;
MapTy Blocks;
public:
MCFunction(StringRef Name) : Name(Name) {}
@ -68,7 +80,8 @@ public:
static MCFunction
createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm,
const MemoryObject &Region, uint64_t Start, uint64_t End,
const MCInstrAnalysis *Ana, raw_ostream &DebugOut);
const MCInstrAnalysis *Ana, raw_ostream &DebugOut,
SmallVectorImpl<uint64_t> &Calls);
typedef MapTy::iterator iterator;
iterator begin() { return Blocks.begin(); }
@ -77,14 +90,11 @@ public:
StringRef getName() const { return Name; }
MCBasicBlock &addBlock(uint64_t Address, const MCBasicBlock &BB) {
assert(!Blocks.count(Address) && "Already a BB at address.");
return Blocks[Address] = BB;
}
MCBasicBlock &getBlockAtAddress(uint64_t Address) {
assert(Blocks.count(Address) && "No BB at address.");
return Blocks[Address];
Blocks.push_back(std::make_pair(Address, BB));
return Blocks.back().second;
}
};
}
#endif

View File

@ -0,0 +1,489 @@
//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "MCFunction.h"
#include "llvm/Support/MachO.h"
#include "llvm/Object/MachOObject.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <algorithm>
#include <cstring>
using namespace llvm;
using namespace object;
static cl::opt<bool>
CFG("cfg", cl::desc("Create a CFG for every symbol in the object file and"
"write it to a graphviz file (MachO-only)"));
static const Target *GetTarget(const MachOObject *MachOObj) {
// Figure out the target triple.
llvm::Triple TT("unknown-unknown-unknown");
switch (MachOObj->getHeader().CPUType) {
case llvm::MachO::CPUTypeI386:
TT.setArch(Triple::ArchType(Triple::x86));
break;
case llvm::MachO::CPUTypeX86_64:
TT.setArch(Triple::ArchType(Triple::x86_64));
break;
case llvm::MachO::CPUTypeARM:
TT.setArch(Triple::ArchType(Triple::arm));
break;
case llvm::MachO::CPUTypePowerPC:
TT.setArch(Triple::ArchType(Triple::ppc));
break;
case llvm::MachO::CPUTypePowerPC64:
TT.setArch(Triple::ArchType(Triple::ppc64));
break;
}
TripleName = TT.str();
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '" << TripleName
<< "', see --version and --triple.\n";
return 0;
}
struct Section {
char Name[16];
uint64_t Address;
uint64_t Size;
uint32_t Offset;
uint32_t NumRelocs;
uint64_t RelocTableOffset;
};
struct Symbol {
uint64_t Value;
uint32_t StringIndex;
uint8_t SectionIndex;
bool operator<(const Symbol &RHS) const { return Value < RHS.Value; }
};
static void DumpAddress(uint64_t Address, ArrayRef<Section> Sections,
MachOObject *MachOObj, raw_ostream &OS) {
for (unsigned i = 0; i != Sections.size(); ++i) {
uint64_t addr = Address-Sections[i].Address;
if (Sections[i].Address <= Address &&
Sections[i].Address + Sections[i].Size > Address) {
StringRef bytes = MachOObj->getData(Sections[i].Offset,
Sections[i].Size);
if (!strcmp(Sections[i].Name, "__cstring"))
OS << '"' << bytes.substr(addr, bytes.find('\0', addr)) << '"';
if (!strcmp(Sections[i].Name, "__cfstring"))
OS << "@\"" << bytes.substr(addr, bytes.find('\0', addr)) << '"';
}
}
}
void llvm::DisassembleInputMachO(StringRef Filename) {
OwningPtr<MemoryBuffer> Buff;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
return;
}
OwningPtr<MachOObject> MachOObj(MachOObject::LoadFromBuffer(Buff.take()));
const Target *TheTarget = GetTarget(MachOObj.get());
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
const MCInstrInfo *InstrInfo = TheTarget->createMCInstrInfo();
OwningPtr<MCInstrAnalysis>
InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo));
// Set up disassembler.
OwningPtr<const MCAsmInfo> AsmInfo(TheTarget->createMCAsmInfo(TripleName));
if (!AsmInfo) {
errs() << "error: no assembly info for target " << TripleName << "\n";
return;
}
OwningPtr<const MCSubtargetInfo>
STI(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!STI) {
errs() << "error: no subtarget info for target " << TripleName << "\n";
return;
}
OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI));
if (!DisAsm) {
errs() << "error: no disassembler for target " << TripleName << "\n";
return;
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
OwningPtr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
AsmPrinterVariant, *AsmInfo, *STI));
if (!IP) {
errs() << "error: no instruction printer for target " << TripleName << '\n';
return;
}
outs() << '\n';
outs() << Filename << ":\n\n";
const macho::Header &Header = MachOObj->getHeader();
const MachOObject::LoadCommandInfo *SymtabLCI = 0;
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i);
switch (LCI.Command.Type) {
case macho::LCT_Symtab:
SymtabLCI = &LCI;
break;
}
}
// Read and register the symbol table data.
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
MachOObj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
MachOObj->RegisterStringTable(*SymtabLC);
std::vector<Section> Sections;
std::vector<Symbol> Symbols;
std::vector<Symbol> UnsortedSymbols; // FIXME: duplication
SmallVector<uint64_t, 8> FoundFns;
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i);
if (LCI.Command.Type == macho::LCT_Segment) {
InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
MachOObj->ReadSegmentLoadCommand(LCI, SegmentLC);
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section> Sect;
MachOObj->ReadSection(LCI, SectNum, Sect);
Section S;
memcpy(S.Name, Sect->Name, 16);
S.Address = Sect->Address;
S.Size = Sect->Size;
S.Offset = Sect->Offset;
S.NumRelocs = Sect->NumRelocationTableEntries;
S.RelocTableOffset = Sect->RelocationTableOffset;
Sections.push_back(S);
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
InMemoryStruct<macho::SymbolTableEntry> STE;
MachOObj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
Symbol S;
S.StringIndex = STE->StringIndex;
S.SectionIndex = STE->SectionIndex;
S.Value = STE->Value;
Symbols.push_back(S);
UnsortedSymbols.push_back(Symbols.back());
}
}
} else if (LCI.Command.Type == macho::LCT_Segment64) {
InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
MachOObj->ReadSegment64LoadCommand(LCI, Segment64LC);
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section64> Sect64;
MachOObj->ReadSection64(LCI, SectNum, Sect64);
Section S;
memcpy(S.Name, Sect64->Name, 16);
S.Address = Sect64->Address;
S.Size = Sect64->Size;
S.Offset = Sect64->Offset;
S.NumRelocs = Sect64->NumRelocationTableEntries;
S.RelocTableOffset = Sect64->RelocationTableOffset;
Sections.push_back(S);
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
InMemoryStruct<macho::Symbol64TableEntry> STE;
MachOObj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
Symbol S;
S.StringIndex = STE->StringIndex;
S.SectionIndex = STE->SectionIndex;
S.Value = STE->Value;
Symbols.push_back(S);
UnsortedSymbols.push_back(Symbols.back());
}
}
} else if (LCI.Command.Type == macho::LCT_FunctionStarts) {
InMemoryStruct<macho::LinkeditDataLoadCommand> LLC;
MachOObj->ReadLinkeditDataLoadCommand(LCI, LLC);
MachOObj->ReadULEB128s(LLC->DataOffset, FoundFns);
}
}
std::map<uint64_t, MCFunction*> FunctionMap;
// Sort the symbols by address, just in case they didn't come in that way.
array_pod_sort(Symbols.begin(), Symbols.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
SmallVector<MCFunction, 16> Functions;
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
if (strcmp(Sections[SectIdx].Name, "__text"))
continue;
uint64_t VMAddr = Sections[SectIdx].Address - Sections[SectIdx].Offset;
for (unsigned i = 0, e = FoundFns.size(); i != e; ++i)
FunctionMap.insert(std::pair<uint64_t,MCFunction*>(FoundFns[i]+VMAddr,0));
StringRef Bytes = MachOObj->getData(Sections[SectIdx].Offset,
Sections[SectIdx].Size);
StringRefMemoryObject memoryObject(Bytes);
bool symbolTableWorked = false;
std::vector<std::pair<uint64_t, uint32_t> > Relocs;
for (unsigned j = 0; j != Sections[SectIdx].NumRelocs; ++j) {
InMemoryStruct<macho::RelocationEntry> RE;
MachOObj->ReadRelocationEntry(Sections[SectIdx].RelocTableOffset, j, RE);
Relocs.push_back(std::make_pair(RE->Word0, RE->Word1 & 0xffffff));
}
array_pod_sort(Relocs.begin(), Relocs.end());
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
if ((unsigned)Symbols[SymIdx].SectionIndex - 1 != SectIdx)
continue;
uint64_t Start = Symbols[SymIdx].Value - Sections[SectIdx].Address;
uint64_t End = (SymIdx+1 == Symbols.size() ||
Symbols[SymIdx].SectionIndex != Symbols[SymIdx+1].SectionIndex) ?
Sections[SectIdx].Size :
Symbols[SymIdx+1].Value - Sections[SectIdx].Address;
uint64_t Size;
if (Start >= End)
continue;
symbolTableWorked = true;
if (!CFG) {
outs() << MachOObj->getStringAtIndex(Symbols[SymIdx].StringIndex)
<< ":\n";
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
DebugOut, nulls())) {
outs() << format("%8llx:\t", Sections[SectIdx].Address + Index);
DumpBytes(StringRef(Bytes.data() + Index, Size));
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
} else {
// Create CFG and use it for disassembly.
SmallVector<uint64_t, 16> Calls;
MCFunction f =
MCFunction::createFunctionFromMC(
MachOObj->getStringAtIndex(Symbols[SymIdx].StringIndex),
DisAsm.get(),
memoryObject, Start, End,
InstrAnalysis.get(), DebugOut,
Calls);
Functions.push_back(f);
FunctionMap[Start] = &Functions.back();
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
FunctionMap.insert(std::pair<uint64_t, MCFunction*>(Calls[i], 0));
}
}
if (CFG) {
if (!symbolTableWorked) {
// Create CFG and use it for disassembly.
SmallVector<uint64_t, 16> Calls;
MCFunction f =
MCFunction::createFunctionFromMC("__TEXT", DisAsm.get(),
memoryObject, 0, Sections[SectIdx].Size,
InstrAnalysis.get(), DebugOut,
Calls);
Functions.push_back(f);
FunctionMap[Sections[SectIdx].Offset] = &Functions.back();
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
FunctionMap.insert(std::pair<uint64_t, MCFunction*>(Calls[i], 0));
}
for (std::map<uint64_t, MCFunction*>::iterator mi = FunctionMap.begin(),
me = FunctionMap.end(); mi != me; ++mi)
if (mi->second == 0) {
SmallVector<uint64_t, 16> Calls;
MCFunction f =
MCFunction::createFunctionFromMC("unknown", DisAsm.get(),
memoryObject, mi->first,
Sections[SectIdx].Size,
InstrAnalysis.get(), DebugOut,
Calls);
Functions.push_back(f);
mi->second = &Functions.back();
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
if (FunctionMap.insert(std::pair<uint64_t, MCFunction*>(Calls[i],0))
.second)
mi = FunctionMap.begin();
}
DenseSet<uint64_t> PrintedBlocks;
for (unsigned ffi = 0, ffe = Functions.size(); ffi != ffe; ++ffi) {
MCFunction &f = Functions[ffi];
for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){
if (!PrintedBlocks.insert(fi->first).second)
continue;
bool hasPreds = FunctionMap.find(fi->first) != FunctionMap.end();
// Only print blocks that have predecessors.
// FIXME: Slow.
for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
++pi)
if (pi->second.contains(fi->first)) {
hasPreds = true;
break;
}
// Data block.
if (!hasPreds && fi != f.begin()) {
uint64_t End = llvm::next(fi) == fe ? Sections[SectIdx].Size :
llvm::next(fi)->first;
outs() << "# " << End-fi->first << " bytes of data:\n";
for (unsigned pos = fi->first; pos != End; ++pos) {
outs() << format("%8x:\t", Sections[SectIdx].Address + pos);
DumpBytes(StringRef(Bytes.data() + pos, 1));
outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]);
}
continue;
}
if (fi->second.contains(fi->first))
outs() << "# Loop begin:\n";
for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie;
++ii) {
const MCDecodedInst &Inst = fi->second.getInsts()[ii];
if (FunctionMap.find(Sections[SectIdx].Address + Inst.Address) !=
FunctionMap.end())
outs() << FunctionMap[Sections[SectIdx].Address + Inst.Address]->
getName() << ":\n";
outs() << format("%8llx:\t", Sections[SectIdx].Address +
Inst.Address);
DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size));
// Simple loops.
if (fi->second.contains(fi->first))
outs() << '\t';
IP->printInst(&Inst.Inst, outs(), "");
for (unsigned j = 0; j != Relocs.size(); ++j)
if (Relocs[j].first >= Sections[SectIdx].Address + Inst.Address &&
Relocs[j].first < Sections[SectIdx].Address + Inst.Address +
Inst.Size) {
outs() << "\t# "
<< MachOObj->getStringAtIndex(
UnsortedSymbols[Relocs[j].second].StringIndex)
<< ' ';
DumpAddress(UnsortedSymbols[Relocs[j].second].Value, Sections,
MachOObj.get(), outs());
}
uint64_t targ = InstrAnalysis->evaluateBranch(Inst.Inst,
Inst.Address,
Inst.Size);
if (targ != -1ULL)
DumpAddress(targ, Sections, MachOObj.get(), outs());
outs() << '\n';
}
}
// Start a new dot file.
std::string Error;
raw_fd_ostream Out((f.getName().str() + ".dot").c_str(), Error);
if (!Error.empty()) {
errs() << "llvm-objdump: warning: " << Error << '\n';
continue;
}
Out << "digraph " << f.getName() << " {\n";
Out << "graph [ rankdir = \"LR\" ];\n";
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
bool hasPreds = false;
// Only print blocks that have predecessors.
// FIXME: Slow.
for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
++pi)
if (pi->second.contains(i->first)) {
hasPreds = true;
break;
}
if (!hasPreds && i != f.begin())
continue;
Out << '"' << i->first << "\" [ label=\"<a>";
// Print instructions.
for (unsigned ii = 0, ie = i->second.getInsts().size(); ii != ie;
++ii) {
// Escape special chars and print the instruction in mnemonic form.
std::string Str;
raw_string_ostream OS(Str);
IP->printInst(&i->second.getInsts()[ii].Inst, OS, "");
Out << DOT::EscapeString(OS.str()) << '|';
}
Out << "<o>\" shape=\"record\" ];\n";
// Add edges.
for (MCBasicBlock::succ_iterator si = i->second.succ_begin(),
se = i->second.succ_end(); si != se; ++si)
Out << i->first << ":o -> " << *si <<":a\n";
}
Out << "}\n";
}
}
}
}

View File

@ -13,6 +13,7 @@
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "MCFunction.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ADT/OwningPtr.h"
@ -46,39 +47,37 @@
using namespace llvm;
using namespace object;
namespace {
cl::list<std::string>
InputFilenames(cl::Positional, cl::desc("<input object files>"),
cl::ZeroOrMore);
static cl::list<std::string>
InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
cl::opt<bool>
Disassemble("disassemble",
cl::desc("Display assembler mnemonics for the machine instructions"));
cl::alias
Disassembled("d", cl::desc("Alias for --disassemble"),
cl::aliasopt(Disassemble));
static cl::opt<bool>
Disassemble("disassemble",
cl::desc("Display assembler mnemonics for the machine instructions"));
static cl::alias
Disassembled("d", cl::desc("Alias for --disassemble"),
cl::aliasopt(Disassemble));
cl::opt<bool>
CFG("cfg", cl::desc("Create a CFG for every symbol in the object file and"
"write it to a graphviz file"));
static cl::opt<bool>
MachO("macho", cl::desc("Use MachO specific object file parser"));
static cl::alias
MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachO));
cl::opt<std::string>
TripleName("triple", cl::desc("Target triple to disassemble for, "
cl::opt<std::string>
llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
"see -version for available targets"));
cl::opt<std::string>
llvm::ArchName("arch", cl::desc("Target arch to disassemble for, "
"see -version for available targets"));
cl::opt<std::string>
ArchName("arch", cl::desc("Target arch to disassemble for, "
"see -version for available targets"));
static StringRef ToolName;
StringRef ToolName;
static bool error(error_code ec) {
if (!ec) return false;
bool error(error_code ec) {
if (!ec) return false;
outs() << ToolName << ": error reading file: " << ec.message() << ".\n";
outs().flush();
return true;
}
outs() << ToolName << ": error reading file: " << ec.message() << ".\n";
outs().flush();
return true;
}
static const Target *GetTarget(const ObjectFile *Obj = NULL) {
@ -106,27 +105,8 @@ static const Target *GetTarget(const ObjectFile *Obj = NULL) {
return 0;
}
namespace {
class StringRefMemoryObject : public MemoryObject {
private:
StringRef Bytes;
public:
StringRefMemoryObject(StringRef bytes) : Bytes(bytes) {}
uint64_t getBase() const { return 0; }
uint64_t getExtent() const { return Bytes.size(); }
int readByte(uint64_t Addr, uint8_t *Byte) const {
if (Addr >= getExtent())
return -1;
*Byte = Bytes[Addr];
return 0;
}
};
}
static void DumpBytes(StringRef bytes) {
static char hex_rep[] = "0123456789abcdef";
void llvm::DumpBytes(StringRef bytes) {
static const char hex_rep[] = "0123456789abcdef";
// FIXME: The real way to do this is to figure out the longest instruction
// and align to that size before printing. I'll fix this when I get
// around to outputting relocations.
@ -151,7 +131,7 @@ static void DumpBytes(StringRef bytes) {
outs() << output;
}
static void DisassembleInput(const StringRef &Filename) {
void llvm::DisassembleInputLibObject(StringRef Filename) {
OwningPtr<MemoryBuffer> Buff;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
@ -259,118 +239,22 @@ static void DisassembleInput(const StringRef &Filename) {
raw_ostream &DebugOut = nulls();
#endif
if (!CFG) {
for (Index = Start; Index < End; Index += Size) {
MCInst Inst;
for (Index = Start; Index < End; Index += Size) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
DebugOut, nulls())) {
uint64_t addr;
if (error(i->getAddress(addr))) break;
outs() << format("%8x:\t", addr + Index);
DumpBytes(StringRef(Bytes.data() + Index, Size));
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
errs() << ToolName << ": warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
DebugOut, nulls())) {
uint64_t addr;
if (error(i->getAddress(addr))) break;
outs() << format("%8x:\t", addr + Index);
DumpBytes(StringRef(Bytes.data() + Index, Size));
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
errs() << ToolName << ": warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
} else {
// Create CFG and use it for disassembly.
MCFunction f =
MCFunction::createFunctionFromMC(Symbols[si].second, DisAsm.get(),
memoryObject, Start, End,
InstrAnalysis.get(), DebugOut);
for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){
bool hasPreds = false;
// Only print blocks that have predecessors.
// FIXME: Slow.
for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
++pi)
if (pi->second.contains(&fi->second)) {
hasPreds = true;
break;
}
// Data block.
if (!hasPreds && fi != f.begin()) {
uint64_t End = llvm::next(fi) == fe ? SectSize :
llvm::next(fi)->first;
uint64_t addr;
if (error(i->getAddress(addr))) break;
outs() << "# " << End-fi->first << " bytes of data:\n";
for (unsigned pos = fi->first; pos != End; ++pos) {
outs() << format("%8x:\t", addr + pos);
DumpBytes(StringRef(Bytes.data() + pos, 1));
outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]);
}
continue;
}
if (fi->second.contains(&fi->second))
outs() << "# Loop begin:\n";
for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie;
++ii) {
uint64_t addr;
if (error(i->getAddress(addr))) break;
const MCDecodedInst &Inst = fi->second.getInsts()[ii];
outs() << format("%8x:\t", addr + Inst.Address);
DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size));
// Simple loops.
if (fi->second.contains(&fi->second))
outs() << '\t';
IP->printInst(&Inst.Inst, outs(), "");
outs() << '\n';
}
}
// Start a new dot file.
std::string Error;
raw_fd_ostream Out((f.getName().str() + ".dot").c_str(), Error);
if (!Error.empty()) {
errs() << ToolName << ": warning: " << Error << '\n';
continue;
}
Out << "digraph " << f.getName() << " {\n";
Out << "graph [ rankdir = \"LR\" ];\n";
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
bool hasPreds = false;
// Only print blocks that have predecessors.
// FIXME: Slow.
for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
++pi)
if (pi->second.contains(&i->second)) {
hasPreds = true;
break;
}
if (!hasPreds && i != f.begin())
continue;
Out << '"' << (uintptr_t)&i->second << "\" [ label=\"<a>";
// Print instructions.
for (unsigned ii = 0, ie = i->second.getInsts().size(); ii != ie;
++ii) {
// Escape special chars and print the instruction in mnemonic form.
std::string Str;
raw_string_ostream OS(Str);
IP->printInst(&i->second.getInsts()[ii].Inst, OS, "");
Out << DOT::EscapeString(OS.str()) << '|';
}
Out << "<o>\" shape=\"record\" ];\n";
// Add edges.
for (MCBasicBlock::succ_iterator si = i->second.succ_begin(),
se = i->second.succ_end(); si != se; ++si)
Out << (uintptr_t)&i->second << ":o -> " << (uintptr_t)*si <<":a\n";
}
Out << "}\n";
}
}
}
@ -404,8 +288,12 @@ int main(int argc, char **argv) {
return 2;
}
std::for_each(InputFilenames.begin(), InputFilenames.end(),
DisassembleInput);
if (MachO)
std::for_each(InputFilenames.begin(), InputFilenames.end(),
DisassembleInputMachO);
else
std::for_each(InputFilenames.begin(), InputFilenames.end(),
DisassembleInputLibObject);
return 0;
}

View File

@ -0,0 +1,47 @@
//===-- llvm-objdump.h ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJDUMP_H
#define LLVM_OBJDUMP_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MemoryObject.h"
namespace llvm {
extern cl::opt<std::string> TripleName;
extern cl::opt<std::string> ArchName;
// Various helper functions.
void DumpBytes(StringRef bytes);
void DisassembleInputLibObject(StringRef Filename);
void DisassembleInputMachO(StringRef Filename);
class StringRefMemoryObject : public MemoryObject {
private:
StringRef Bytes;
public:
StringRefMemoryObject(StringRef bytes) : Bytes(bytes) {}
uint64_t getBase() const { return 0; }
uint64_t getExtent() const { return Bytes.size(); }
int readByte(uint64_t Addr, uint8_t *Byte) const {
if (Addr >= getExtent())
return -1;
*Byte = Bytes[Addr];
return 0;
}
};
}
#endif