Rename bunch of variables.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41250 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Devang Patel 2007-08-21 21:12:02 +00:00
parent 60cbab4252
commit 0b8e02b704

View File

@ -705,89 +705,94 @@ void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
} }
/// splitLoop - Split current loop L in two loops using split information
/// SD. Update dominator information. Maintain LCSSA form.
bool LoopIndexSplit::splitLoop(SplitInfo &SD) { bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
BasicBlock *Preheader = L->getLoopPreheader(); // True loop is original loop. False loop is cloned loop.
BasicBlock *SplitBlock = SD.SplitCondition->getParent();
BasicBlock *Latch = L->getLoopLatch(); BasicBlock *TL_Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader(); BasicBlock *TL_SplitCondBlock = SD.SplitCondition->getParent();
BranchInst *SplitTerminator = cast<BranchInst>(SplitBlock->getTerminator()); BasicBlock *TL_Latch = L->getLoopLatch();
BasicBlock *TL_Header = L->getHeader();
BranchInst *TL_SplitTerminator =
cast<BranchInst>(TL_SplitCondBlock->getTerminator());
// FIXME - Unable to handle triange loops at the moment. // FIXME - Unable to handle triange loops at the moment.
// In triangle loop, split condition is in header and one of the // In triangle loop, split condition is in header and one of the
// the split destination is loop latch. If split condition is EQ // the split destination is loop latch. If split condition is EQ
// then such loops are already handle in processOneIterationLoop(). // then such loops are already handle in processOneIterationLoop().
if (Header == SplitBlock BasicBlock *Succ0 = TL_SplitTerminator->getSuccessor(0);
&& (Latch == SplitTerminator->getSuccessor(0) BasicBlock *Succ1 = TL_SplitTerminator->getSuccessor(1);
|| Latch == SplitTerminator->getSuccessor(1))) if (TL_Header == TL_SplitCondBlock
&& (TL_Latch == Succ0 || TL_Latch == Succ1))
return false; return false;
// If one of the split condition branch is post dominating other then loop // If one of the split condition branch is post dominating other then loop
// index split is not appropriate. // index split is not appropriate.
BasicBlock *Succ0 = SplitTerminator->getSuccessor(0); if (DT->dominates(Succ0, TL_Latch) || DT->dominates(Succ1, TL_Latch))
BasicBlock *Succ1 = SplitTerminator->getSuccessor(1);
if (DT->dominates(Succ0, Latch) || DT->dominates(Succ1, Latch))
return false; return false;
// If one of the split condition branch is a predecessor of the other // If one of the split condition branch is a predecessor of the other
// split condition branch head then do not split loop on this condition. // split condition branch head then do not split loop on this condition.
for(pred_iterator PI = pred_begin(Succ0), PE = pred_end(Succ0); PI != PE; ++PI) for(pred_iterator PI = pred_begin(Succ0), PE = pred_end(Succ0);
PI != PE; ++PI)
if (Succ1 == *PI) if (Succ1 == *PI)
return false; return false;
for(pred_iterator PI = pred_begin(Succ1), PE = pred_end(Succ1); PI != PE; ++PI) for(pred_iterator PI = pred_begin(Succ1), PE = pred_end(Succ1);
PI != PE; ++PI)
if (Succ0 == *PI) if (Succ0 == *PI)
return false; return false;
// True loop is original loop. False loop is cloned loop.
bool SignedPredicate = ExitCondition->isSignedPredicate(); bool SignedPredicate = ExitCondition->isSignedPredicate();
//[*] Calculate True loop's new Exit Value in loop preheader. //[*] Calculate True loop's new Exit Value in loop preheader.
// TLExitValue = min(SplitValue, ExitValue) // TL_ExitValue = min(SplitValue, ExitValue)
//[*] Calculate False loop's new Start Value in loop preheader. //[*] Calculate False loop's new Start Value in loop preheader.
// FLStartValue = min(SplitValue, TrueLoop.StartValue) // FL_StartValue = min(SplitValue, TrueLoop.StartValue)
Value *TLExitValue = NULL; Value *TL_ExitValue = NULL;
Value *FLStartValue = NULL; Value *FL_StartValue = NULL;
if (isa<ConstantInt>(SD.SplitValue)) { if (isa<ConstantInt>(SD.SplitValue)) {
TLExitValue = SD.SplitValue; TL_ExitValue = SD.SplitValue;
FLStartValue = SD.SplitValue; FL_StartValue = SD.SplitValue;
} }
else { else {
Instruction *TL_PHTerminator = TL_Preheader->getTerminator();
Value *C1 = new ICmpInst(SignedPredicate ? Value *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum), ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", "lsplit.ev", TL_PHTerminator);
Preheader->getTerminator()); TL_ExitValue = new SelectInst(C1, SD.SplitValue,
TLExitValue = new SelectInst(C1, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum), ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", Preheader->getTerminator()); "lsplit.ev", TL_PHTerminator);
Value *C2 = new ICmpInst(SignedPredicate ? Value *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, StartValue, "lsplit.sv", SD.SplitValue, StartValue, "lsplit.sv",
Preheader->getTerminator()); TL_PHTerminator);
FLStartValue = new SelectInst(C2, SD.SplitValue, StartValue, FL_StartValue = new SelectInst(C2, SD.SplitValue, StartValue,
"lsplit.sv", Preheader->getTerminator()); "lsplit.sv", TL_Preheader->getTerminator());
} }
//[*] Clone loop. Avoid true destination of split condition and //[*] Clone loop. Avoid true destination of split condition and
// the blocks dominated by true destination. // the blocks dominated by true destination.
DenseMap<const Value *, Value *> ValueMap; DenseMap<const Value *, Value *> ValueMap;
Loop *FalseLoop = CloneLoop(L, LPM, LI, ValueMap, this); Loop *FalseLoop = CloneLoop(L, LPM, LI, ValueMap, this);
BasicBlock *FalseHeader = FalseLoop->getHeader(); BasicBlock *FL_Header = FalseLoop->getHeader();
//[*] True loop's exit edge enters False loop. //[*] True loop's exit edge enters False loop.
PHINode *IndVarClone = cast<PHINode>(ValueMap[IndVar]); PHINode *FL_IndVar = cast<PHINode>(ValueMap[IndVar]);
BasicBlock *ExitingBlock = ExitCondition->getParent(); BasicBlock *TL_ExitingBlock = ExitCondition->getParent();
BranchInst *ExitInsn = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); BranchInst *TL_ExitInsn =
assert (ExitInsn && "Unable to find suitable loop exit branch"); dyn_cast<BranchInst>(TL_ExitingBlock->getTerminator());
BasicBlock *ExitDest = ExitInsn->getSuccessor(1); assert (TL_ExitInsn && "Unable to find suitable loop exit branch");
BasicBlock *TL_ExitDest = TL_ExitInsn->getSuccessor(1);
if (L->contains(ExitDest)) { if (L->contains(TL_ExitDest)) {
ExitDest = ExitInsn->getSuccessor(0); TL_ExitDest = TL_ExitInsn->getSuccessor(0);
ExitInsn->setSuccessor(0, FalseHeader); TL_ExitInsn->setSuccessor(0, FL_Header);
} else } else
ExitInsn->setSuccessor(1, FalseHeader); TL_ExitInsn->setSuccessor(1, FL_Header);
// Collect inverse map of Header PHINodes. // Collect inverse map of Header PHINodes.
DenseMap<Value *, Value *> InverseMap; DenseMap<Value *, Value *> InverseMap;
@ -801,65 +806,68 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
} }
// Update False loop's header // Update False loop's header
for (BasicBlock::iterator BI = FalseHeader->begin(), BE = FalseHeader->end(); for (BasicBlock::iterator BI = FL_Header->begin(), BE = FL_Header->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->removeIncomingValue(Preheader); PN->removeIncomingValue(TL_Preheader);
if (PN == IndVarClone) if (PN == FL_IndVar)
PN->addIncoming(FLStartValue, ExitingBlock); PN->addIncoming(FL_StartValue, TL_ExitingBlock);
else { else {
PHINode *OrigPN = cast<PHINode>(InverseMap[PN]); PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
Value *V2 = OrigPN->getIncomingValueForBlock(ExitingBlock); Value *V2 = OrigPN->getIncomingValueForBlock(TL_ExitingBlock);
PN->addIncoming(V2, ExitingBlock); PN->addIncoming(V2, TL_ExitingBlock);
} }
} else } else
break; break;
} }
// Update ExitDest. Now it's predecessor is False loop's exit block. // Update TL_ExitDest. Now it's predecessor is False loop's exit block.
BasicBlock *ExitingBlockClone = cast<BasicBlock>(ValueMap[ExitingBlock]); BasicBlock *FL_ExitingBlock = cast<BasicBlock>(ValueMap[TL_ExitingBlock]);
for (BasicBlock::iterator BI = ExitDest->begin(), BE = ExitDest->end(); for (BasicBlock::iterator BI = TL_ExitDest->begin(), BE = TL_ExitDest->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(ExitingBlock)], ExitingBlockClone); PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(TL_ExitingBlock)],
PN->removeIncomingValue(ExitingBlock); FL_ExitingBlock);
PN->removeIncomingValue(TL_ExitingBlock);
} else } else
break; break;
} }
if (DT) { if (DT) {
DT->changeImmediateDominator(FalseHeader, ExitingBlock); DT->changeImmediateDominator(FL_Header, TL_ExitingBlock);
DT->changeImmediateDominator(ExitDest, cast<BasicBlock>(ValueMap[ExitingBlock])); DT->changeImmediateDominator(TL_ExitDest,
cast<BasicBlock>(ValueMap[TL_ExitingBlock]));
} }
assert (!L->contains(ExitDest) && " Unable to find exit edge destination"); assert (!L->contains(TL_ExitDest) && " Unable to find exit edge destination");
//[*] Split Exit Edge. //[*] Split Exit Edge.
BasicBlock *TL_ExitBlock = SplitEdge(ExitingBlock, FalseHeader, this); BasicBlock *TL_ExitBlock = SplitEdge(TL_ExitingBlock, FL_Header, this);
//[*] Eliminate split condition's false branch from True loop. //[*] Eliminate split condition's false branch from True loop.
BranchInst *BR = cast<BranchInst>(SplitBlock->getTerminator()); BranchInst *TL_BR = cast<BranchInst>(TL_SplitCondBlock->getTerminator());
BasicBlock *FBB = BR->getSuccessor(1); BasicBlock *TL_FalseBlock = TL_BR->getSuccessor(1);
BR->setUnconditionalDest(BR->getSuccessor(0)); TL_BR->setUnconditionalDest(TL_BR->getSuccessor(0));
removeBlocks(FBB, L, BR->getSuccessor(0)); removeBlocks(TL_FalseBlock, L, TL_BR->getSuccessor(0));
//[*] Update True loop's exit value using new exit value. //[*] Update True loop's exit value using new exit value.
ExitCondition->setOperand(ExitValueNum, TLExitValue); ExitCondition->setOperand(ExitValueNum, TL_ExitValue);
//[*] Eliminate split condition's true branch in False loop CFG. //[*] Eliminate split condition's true branch in False loop CFG.
BasicBlock *FSplitBlock = cast<BasicBlock>(ValueMap[SplitBlock]); BasicBlock *FL_SplitCondBlock = cast<BasicBlock>(ValueMap[TL_SplitCondBlock]);
BranchInst *FBR = cast<BranchInst>(FSplitBlock->getTerminator()); BranchInst *FL_BR = cast<BranchInst>(FL_SplitCondBlock->getTerminator());
BasicBlock *TBB = FBR->getSuccessor(0); BasicBlock *FL_TrueBlock = FL_BR->getSuccessor(0);
FBR->setUnconditionalDest(FBR->getSuccessor(1)); FL_BR->setUnconditionalDest(FL_BR->getSuccessor(1));
removeBlocks(TBB, FalseLoop, cast<BasicBlock>(FBR->getSuccessor(0))); removeBlocks(FL_TrueBlock, FalseLoop,
cast<BasicBlock>(FL_BR->getSuccessor(0)));
//[*] Preserve LCSSA //[*] Preserve LCSSA
for(BasicBlock::iterator BI = FalseHeader->begin(), BE = FalseHeader->end(); for(BasicBlock::iterator BI = FL_Header->begin(), BE = FL_Header->end();
BI != BE; ++BI) { BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) { if (PHINode *PN = dyn_cast<PHINode>(BI)) {
Value *V1 = PN->getIncomingValueForBlock(TL_ExitBlock); Value *V1 = PN->getIncomingValueForBlock(TL_ExitBlock);
PHINode *newPHI = new PHINode(PN->getType(), PN->getName()); PHINode *newPHI = new PHINode(PN->getType(), PN->getName());
newPHI->addIncoming(V1, ExitingBlock); newPHI->addIncoming(V1, TL_ExitingBlock);
TL_ExitBlock->getInstList().push_front(newPHI); TL_ExitBlock->getInstList().push_front(newPHI);
PN->removeIncomingValue(TL_ExitBlock); PN->removeIncomingValue(TL_ExitBlock);
PN->addIncoming(newPHI, TL_ExitBlock); PN->addIncoming(newPHI, TL_ExitBlock);
@ -869,4 +877,3 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
return true; return true;
} }