remove function names from comments; NFC

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221274 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2014-11-04 16:27:42 +00:00
parent f1ab807a2b
commit 0bbad0131a

View File

@ -39,8 +39,8 @@ using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6; const unsigned MaxDepth = 6;
/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
/// unknown returns 0). For vector types, returns the element type's bitwidth. /// 0). For vector types, returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
if (unsigned BitWidth = Ty->getScalarSizeInBits()) if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth; return BitWidth;
@ -1322,8 +1322,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
} }
/// ComputeSignBit - Determine whether the sign bit is known to be zero or /// Determine whether the sign bit is known to be zero or one.
/// one. Convenience wrapper around computeKnownBits. /// Convenience wrapper around computeKnownBits.
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
const DataLayout *TD, unsigned Depth, const DataLayout *TD, unsigned Depth,
const Query &Q) { const Query &Q) {
@ -1340,9 +1340,9 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
KnownZero = ZeroBits[BitWidth - 1]; KnownZero = ZeroBits[BitWidth - 1];
} }
/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one /// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to /// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer /// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers. /// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
const Query &Q) { const Query &Q) {
@ -1519,10 +1519,10 @@ static bool rangeMetadataExcludesValue(MDNode* Ranges,
return true; return true;
} }
/// isKnownNonZero - Return true if the given value is known to be non-zero /// Return true if the given value is known to be non-zero when defined.
/// when defined. For vectors return true if every element is known to be /// For vectors return true if every element is known to be non-zero when
/// non-zero when defined. Supports values with integer or pointer type and /// defined. Supports values with integer or pointer type and vectors of
/// vectors of integers. /// integers.
bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
const Query &Q) { const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) { if (Constant *C = dyn_cast<Constant>(V)) {
@ -1667,9 +1667,9 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
return KnownOne != 0; return KnownOne != 0;
} }
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// Return true if 'V & Mask' is known to be zero. We use this predicate to
/// this predicate to simplify operations downstream. Mask is known to be zero /// simplify operations downstream. Mask is known to be zero for bits that V
/// for bits that V cannot have. /// cannot have.
/// ///
/// This function is defined on values with integer type, values with pointer /// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case /// type (but only if TD is non-null), and vectors of integers. In the case
@ -1686,11 +1686,11 @@ bool MaskedValueIsZero(Value *V, const APInt &Mask,
/// ComputeNumSignBits - Return the number of times the sign bit of the /// Return the number of times the sign bit of the register is replicated into
/// register is replicated into the other bits. We know that at least 1 bit /// the other bits. We know that at least 1 bit is always equal to the sign bit
/// is always equal to the sign bit (itself), but other cases can give us /// (itself), but other cases can give us information. For example, immediately
/// information. For example, immediately after an "ashr X, 2", we know that /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
/// the top 3 bits are all equal to each other, so we return 3. /// other, so we return 3.
/// ///
/// 'Op' must have a scalar integer type. /// 'Op' must have a scalar integer type.
/// ///
@ -1862,9 +1862,9 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
} }
/// ComputeMultiple - This function computes the integer multiple of Base that /// This function computes the integer multiple of Base that equals V.
/// equals V. If successful, it returns true and returns the multiple in /// If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks /// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true. /// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool LookThroughSExt, unsigned Depth) { bool LookThroughSExt, unsigned Depth) {
@ -1982,8 +1982,8 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
return false; return false;
} }
/// CannotBeNegativeZero - Return true if we can prove that the specified FP /// Return true if we can prove that the specified FP value is never equal to
/// value is never equal to -0.0. /// -0.0.
/// ///
/// NOTE: this function will need to be revisited when we support non-default /// NOTE: this function will need to be revisited when we support non-default
/// rounding modes! /// rounding modes!
@ -2036,8 +2036,8 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return false; return false;
} }
/// isBytewiseValue - If the specified value can be set by repeating the same /// If the specified value can be set by repeating the same byte in memory,
/// byte in memory, return the i8 value that it is represented with. This is /// return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null. /// byte store (e.g. i16 0x1234), return null.
@ -2185,7 +2185,7 @@ static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
} }
/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if /// Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if it /// the scalar value indexed is already around as a register, for example if it
/// were inserted directly into the aggregrate. /// were inserted directly into the aggregrate.
/// ///
@ -2275,9 +2275,8 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
return nullptr; return nullptr;
} }
/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if /// Analyze the specified pointer to see if it can be expressed as a base
/// it can be expressed as a base pointer plus a constant offset. Return the /// pointer plus a constant offset. Return the base and offset to the caller.
/// base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const DataLayout *DL) { const DataLayout *DL) {
// Without DataLayout, conservatively assume 64-bit offsets, which is // Without DataLayout, conservatively assume 64-bit offsets, which is
@ -2314,9 +2313,9 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
} }
/// getConstantStringInfo - This function computes the length of a /// This function computes the length of a null-terminated C string pointed to
/// null-terminated C string pointed to by V. If successful, it returns true /// by V. If successful, it returns true and returns the string in Str.
/// and returns the string in Str. If unsuccessful, it returns false. /// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) { uint64_t Offset, bool TrimAtNul) {
assert(V); assert(V);
@ -2400,7 +2399,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// nodes. // nodes.
// TODO: See if we can integrate these two together. // TODO: See if we can integrate these two together.
/// GetStringLengthH - If we can compute the length of the string pointed to by /// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0. /// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
// Look through noop bitcast instructions. // Look through noop bitcast instructions.
@ -2449,7 +2448,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
return StrData.size()+1; return StrData.size()+1;
} }
/// GetStringLength - If we can compute the length of the string pointed to by /// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0. /// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(Value *V) { uint64_t llvm::GetStringLength(Value *V) {
if (!V->getType()->isPointerTy()) return 0; if (!V->getType()->isPointerTy()) return 0;
@ -2522,9 +2521,7 @@ llvm::GetUnderlyingObjects(Value *V,
} while (!Worklist.empty()); } while (!Worklist.empty());
} }
/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer /// Return true if the only users of this pointer are lifetime markers.
/// are lifetime markers.
///
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
for (const User *U : V->users()) { for (const User *U : V->users()) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
@ -2639,8 +2636,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
} }
} }
/// isKnownNonNull - Return true if we know that the specified value is never /// Return true if we know that the specified value is never null.
/// null.
bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
// Alloca never returns null, malloc might. // Alloca never returns null, malloc might.
if (isa<AllocaInst>(V)) return true; if (isa<AllocaInst>(V)) return true;