Part of bug 122. Removed dependency of AsmWriter on SlotCalculator by

incorporating a significantly simpler "SlotMachine" into this file. The
SlotMachine is tailored for use by only the AsmWriter whose requirements
for slot numbers are vastly different than from the Bytecode/Writer. Code
change passes all Feature and Regression tests.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13784 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2004-05-26 07:18:52 +00:00
parent ebac64534c
commit 0d1b77e282

View File

@ -27,7 +27,6 @@
#include "llvm/iOther.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Analysis/SlotCalculator.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
@ -35,6 +34,105 @@
#include <algorithm>
using namespace llvm;
namespace {
/// This class provides computation of slot numbers for LLVM Assembly writing.
/// @brief LLVM Assembly Writing Slot Computation.
class SlotMachine {
/// @name Types
/// @{
public:
/// @brief A mapping of Values to slot numbers
typedef std::map<const Value*, unsigned> ValueMap;
/// @brief A plane with next slot number and ValueMap
struct Plane {
unsigned next_slot; ///< The next slot number to use
ValueMap map; ///< The map of Value* -> unsigned
Plane() { next_slot = 0; } ///< Make sure we start at 0
};
/// @brief The map of planes by Type
typedef std::map<const Type*, Plane> TypedPlanes;
/// @}
/// @name Constructors
/// @{
public:
/// @brief Construct from a module
SlotMachine(const Module *M );
/// @brief Construct from a function, starting out in incorp state.
SlotMachine(const Function *F );
/// @}
/// @name Accessors
/// @{
public:
/// Return the slot number of the specified value in it's type
/// plane. Its an error to ask for something not in the SlotMachine.
/// Its an error to ask for a Type*
unsigned getSlot(const Value *V) const;
/// @}
/// @name Mutators
/// @{
public:
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotMachine.
void incorporateFunction(const Function *F);
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotMachine. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// @}
/// @name Implementation Details
/// @{
private:
/// Values can be crammed into here at will. If they haven't
/// been inserted already, they get inserted, otherwise they are ignored.
/// Either way, the slot number for the Value* is returned.
unsigned createSlot(const Value *V);
/// Insert a value into the value table. Return the slot number
/// that it now occupies. BadThings(TM) will happen if you insert a
/// Value that's already been inserted.
unsigned insertValue( const Value *V );
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
void operator=(const SlotMachine &); // DO NOT IMPLEMENT
/// @}
/// @name Data
/// @{
public:
/// @brief The module for which we are holding slot numbers
const Module *TheModule;
/// @brief Whether or not we have a function incorporated
bool FunctionIncorporated;
/// @brief The TypePlanes map for the module level data
TypedPlanes mMap;
/// @brief The TypePlanes map for the function level data
TypedPlanes fMap;
/// @}
};
}
static RegisterPass<PrintModulePass>
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
static RegisterPass<PrintFunctionPass>
@ -43,7 +141,7 @@ Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotCalculator *Table);
SlotMachine *Machine);
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
@ -58,18 +156,18 @@ static const Module *getModuleFromVal(const Value *V) {
return 0;
}
static SlotCalculator *createSlotCalculator(const Value *V) {
static SlotMachine *createSlotMachine(const Value *V) {
assert(!isa<Type>(V) && "Can't create an SC for a type!");
if (const Argument *FA = dyn_cast<Argument>(V)) {
return new SlotCalculator(FA->getParent(), false);
return new SlotMachine(FA->getParent());
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
return new SlotCalculator(I->getParent()->getParent(), false);
return new SlotMachine(I->getParent()->getParent());
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
return new SlotCalculator(BB->getParent(), false);
return new SlotMachine(BB->getParent());
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
return new SlotCalculator(GV->getParent(), false);
return new SlotMachine(GV->getParent());
} else if (const Function *Func = dyn_cast<Function>(V)) {
return new SlotCalculator(Func, false);
return new SlotMachine(Func);
}
return 0;
}
@ -246,7 +344,7 @@ std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotCalculator *Table) {
SlotMachine *Machine) {
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << (CB == ConstantBool::True ? "true" : "false");
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
@ -322,12 +420,12 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
Out << " ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(0),
PrintName, TypeTable, Table);
PrintName, TypeTable, Machine);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
TypeTable, Table);
TypeTable, Machine);
}
}
Out << " ]";
@ -339,14 +437,14 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(0),
PrintName, TypeTable, Table);
PrintName, TypeTable, Machine);
for (unsigned i = 1; i < CS->getNumOperands(); i++) {
Out << ", ";
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(i),
PrintName, TypeTable, Table);
PrintName, TypeTable, Machine);
}
}
@ -355,14 +453,14 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
Out << "null";
} else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
WriteAsOperandInternal(Out, PR->getValue(), true, TypeTable, Table);
WriteAsOperandInternal(Out, PR->getValue(), true, TypeTable, Machine);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName() << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
printTypeInt(Out, (*OI)->getType(), TypeTable);
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
if (OI+1 != CE->op_end())
Out << ", ";
}
@ -386,35 +484,30 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type*, std::string> &TypeTable,
SlotCalculator *Table) {
SlotMachine *Machine) {
Out << " ";
if (PrintName && V->hasName()) {
Out << getLLVMName(V->getName());
} else {
if (const Constant *CV = dyn_cast<Constant>(V)) {
WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
} else {
int Slot;
if (Table) {
Slot = Table->getSlot(V);
if (Machine) {
Slot = Machine->getSlot(V);
} else {
if (const Type *Ty = dyn_cast<Type>(V)) {
Out << Ty->getDescription();
return;
}
Table = createSlotCalculator(V);
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
Machine = createSlotMachine(V);
if (Machine == 0) { Out << "BAD VALUE TYPE!"; return; }
Slot = Table->getSlot(V);
delete Table;
Slot = Machine->getSlot(V);
delete Machine;
}
if (Slot >= 0) Out << "%" << Slot;
else if (PrintName)
if (V->hasName())
Out << "<badref: " << getLLVMName(V->getName()) << ">";
else
Out << "<badref>"; // Not embedded into a location?
Out << "%" << Slot;
}
}
}
@ -447,14 +540,14 @@ namespace llvm {
class AssemblyWriter {
std::ostream *Out;
SlotCalculator &Table;
SlotMachine &Machine;
const Module *TheModule;
std::map<const Type *, std::string> TypeNames;
AssemblyAnnotationWriter *AnnotationWriter;
public:
inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M,
inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(&o), Table(Tab), TheModule(M), AnnotationWriter(AAW) {
: Out(&o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
@ -548,7 +641,7 @@ std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
if (PrintType) { *Out << " "; printType(Operand->getType()); }
WriteAsOperandInternal(*Out, Operand, PrintName, TypeNames, &Table);
WriteAsOperandInternal(*Out, Operand, PrintName, TypeNames, &Machine);
}
@ -674,7 +767,7 @@ void AssemblyWriter::printFunction(const Function *F) {
else
*Out << "\"\"";
*Out << "(";
Table.incorporateFunction(F);
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
const FunctionType *FT = F->getFunctionType();
@ -701,7 +794,7 @@ void AssemblyWriter::printFunction(const Function *F) {
*Out << "}\n";
}
Table.purgeFunction();
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
@ -717,8 +810,6 @@ void AssemblyWriter::printArgument(const Argument *Arg) {
// Output name, if available...
if (Arg->hasName())
*Out << " " << getLLVMName(Arg->getName());
else if (Table.getSlot(Arg) < 0)
*Out << "<badref>";
}
/// printBasicBlock - This member is called for each basic block in a method.
@ -727,12 +818,7 @@ void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
*Out << "\n" << BB->getName() << ":";
} else if (!BB->use_empty()) { // Don't print block # of no uses...
int Slot = Table.getSlot(BB);
*Out << "\n; <label>:";
if (Slot >= 0)
*Out << Slot; // Extra newline separates out label's
else
*Out << "<badref>";
*Out << "\n; <label>:" << Machine.getSlot(BB);
}
if (BB->getParent() == 0)
@ -777,9 +863,7 @@ void AssemblyWriter::printInfoComment(const Value &V) {
printType(V.getType()) << ">";
if (!V.hasName()) {
int Slot = Table.getSlot(&V); // Print out the def slot taken...
if (Slot >= 0) *Out << ":" << Slot;
else *Out << ":<badref>";
*Out << ":" << Machine.getSlot(&V); // Print out the def slot taken.
}
*Out << " [#uses=" << V.use_size() << "]"; // Output # uses
}
@ -956,26 +1040,26 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotCalculator SlotTable(this, false);
SlotMachine SlotTable(this);
AssemblyWriter W(o, SlotTable, this, AAW);
W.write(this);
}
void GlobalVariable::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), false);
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable, getParent(), 0);
W.write(this);
}
void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotCalculator SlotTable(getParent(), false);
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable, getParent(), AAW);
W.write(this);
}
void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotCalculator SlotTable(getParent(), false);
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable,
getParent() ? getParent()->getParent() : 0, AAW);
W.write(this);
@ -983,7 +1067,7 @@ void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
const Function *F = getParent() ? getParent()->getParent() : 0;
SlotCalculator SlotTable(F, false);
SlotMachine SlotTable(F);
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
W.write(this);
@ -1030,7 +1114,7 @@ void Type::dump() const { print(std::cerr); }
void CachedWriter::setModule(const Module *M) {
delete SC; delete AW;
if (M) {
SC = new SlotCalculator(M, false);
SC = new SlotMachine(M );
AW = new AssemblyWriter(*Out, *SC, M, 0);
} else {
SC = 0; AW = 0;
@ -1071,4 +1155,294 @@ void CachedWriter::setStream(std::ostream &os) {
if (AW) AW->setStream(os);
}
//===----------------------------------------------------------------------===//
//===-- SlotMachine Implementation
//===----------------------------------------------------------------------===//
#if 0
#define SC_DEBUG(X) std::cerr << X
#else
#define SC_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotMachine::SlotMachine(const Module *M)
: TheModule(M)
, FunctionIncorporated(false)
, mMap()
, fMap()
{
if ( M != 0 )
processModule();
}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotMachine::SlotMachine(const Function *F )
: TheModule( F ? F->getParent() : 0 )
, FunctionIncorporated(true)
, mMap()
, fMap()
{
if ( TheModule ) {
processModule(); // Process module level stuff
incorporateFunction(F); // Start out in incorporated state
}
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotMachine::processModule() {
SC_DEBUG("begin processModule!\n");
// Add all of the global variables to the value table...
for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
I != E; ++I)
createSlot(I);
// Add all the functions to the table
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
createSlot(I);
// Add all of the module level constants used as initializers
for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
I != E; ++I)
if (I->hasInitializer())
createSlot(I->getInitializer());
SC_DEBUG("end processModule!\n");
}
// Incorporate the arguments, basic blocks, and instructions of a function.
// This is the *only* way to get the FunctionIncorporated flag set.
void SlotMachine::incorporateFunction(const Function *F) {
SC_DEBUG("begin processFunction!\n");
FunctionIncorporated = true;
// Add all the function arguments
for(Function::const_aiterator AI = F->abegin(),
AE = F->aend(); AI != AE; ++AI)
createSlot(AI);
SC_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
createSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
createSlot(I);
}
}
SC_DEBUG("end processFunction!\n");
}
// Clean up after incorporating a function. This is the only way
// (other than construction) to get the FunctionIncorporated flag cleared.
void SlotMachine::purgeFunction() {
SC_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
FunctionIncorporated = false;
SC_DEBUG("end purgeFunction!\n");
}
/// Get the slot number for a value. This function will assert if you
/// ask for a Value that hasn't previously been inserted with createSlot.
/// Types are forbidden because Type does not inherit from Value (any more).
unsigned SlotMachine::getSlot(const Value *V) const {
assert( V && "Can't get slot for null Value" );
assert( !isa<Type>(V) && "Can't get slot for a type" );
// Do not number CPR's at all. They are an abomination
if ( const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V) )
V = CPR->getValue() ;
// Get the type of the value
const Type* VTy = V->getType();
// Find the type plane in the module map
TypedPlanes::const_iterator MI = mMap.find(VTy);
if ( FunctionIncorporated ) {
// Lookup the type in the function map too
TypedPlanes::const_iterator FI = fMap.find(VTy);
// If there is a corresponding type plane in the function map
if ( FI != fMap.end() ) {
// Lookup the Value in the function map
ValueMap::const_iterator FVI = FI->second.map.find(V);
// If the value doesn't exist in the function map
if ( FVI == FI->second.map.end() ) {
// Look up the value in the module map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it, it wasn't inserted
assert( MVI != MI->second.map.end() && "Value not found");
// We found it only at the module level
return MVI->second;
// else the value exists in the function map
} else {
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
return MI->second.next_slot + FVI->second;
}
// else there is not a corresponding type plane in the function map
} else {
assert( MI != mMap.end() && "No such type plane!" );
// Look up the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it, it wasn't inserted.
assert( MVI != MI->second.map.end() && "Value not found");
// We found it only in the module level and function level
// didn't even have a type plane.
return MVI->second;
}
}
// N.B. Can only get here if !FunctionIncorporated
// Make sure the type plane exists
assert( MI != mMap.end() && "No such type plane!" );
// Lookup the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// Make sure we found it.
assert( MVI != MI->second.map.end() && "Value not found" );
// Return it.
return MVI->second;
}
// Create a new slot, or return the existing slot if it is already
// inserted. Note that the logic here parallels getSlot but instead
// of asserting when the Value* isn't found, it inserts the value.
unsigned SlotMachine::createSlot(const Value *V) {
assert( V && "Can't insert a null Value to SlotMachine");
assert( !isa<Type>(V) && "Can't insert a Type into SlotMachine");
const Type* VTy = V->getType();
// Just ignore void typed things
if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
// Look up the type plane for the Value's type from the module map
TypedPlanes::const_iterator MI = mMap.find(VTy);
if ( FunctionIncorporated ) {
// Get the type plane for the Value's type from the function map
TypedPlanes::const_iterator FI = fMap.find(VTy);
// If there is a corresponding type plane in the function map
if ( FI != fMap.end() ) {
// Lookup the Value in the function map
ValueMap::const_iterator FVI = FI->second.map.find(V);
// If the value doesn't exist in the function map
if ( FVI == FI->second.map.end() ) {
// If there is no corresponding type plane in the module map
if ( MI == mMap.end() )
return insertValue(V);
// Look up the value in the module map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it, it wasn't inserted
if ( MVI == MI->second.map.end() )
return insertValue(V);
else
// We found it only at the module level
return MVI->second;
// else the value exists in the function map
} else {
if ( MI == mMap.end() )
return FVI->second;
else
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
return MI->second.next_slot + FVI->second;
}
// else there is not a corresponding type plane in the function map
} else {
// If the type plane doesn't exists at the module level
if ( MI == mMap.end() ) {
return insertValue(V);
// else type plane exists at the module level, examine it
} else {
// Look up the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it there either
if ( MVI == MI->second.map.end() )
// Return the slot number as the module's contribution to
// the type plane plus the index of the function map insertion.
return MI->second.next_slot + insertValue(V);
else
return MVI->second;
}
}
}
// N.B. Can only get here if !FunctionIncorporated
// If the module map's type plane is not for the Value's type
if ( MI != mMap.end() ) {
// Lookup the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
if ( MVI != MI->second.map.end() )
return MVI->second;
}
return insertValue(V);
}
// Low level insert function. Minimal checking is done. This
// function is just for the convenience of createSlot (above).
unsigned SlotMachine::insertValue(const Value *V ) {
assert(V && "Can't insert a null Value into SlotMachine!");
assert(!isa<Type>(V) && "Can't insert a Type into SlotMachine!");
// If this value does not contribute to a plane (is void or constant)
// or if the value already has a name then ignore it.
if (V->getType() == Type::VoidTy || // Ignore void type nodes
(V->hasName() || isa<Constant>(V)) ) {
SC_DEBUG("ignored value " << *V << "\n");
return 0; // FIXME: Wrong return value
}
if (!isa<GlobalValue>(V)) // Initializers for globals are handled explicitly
if (const Constant *C = dyn_cast<Constant>(V)) {
// This makes sure that if a constant has uses (for example an array of
// const ints), that they are inserted also.
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
createSlot(*I);
}
const Type *VTy = V->getType();
unsigned DestSlot = 0;
if ( FunctionIncorporated ) {
TypedPlanes::iterator I = fMap.find( VTy );
if ( I == fMap.end() )
I = fMap.insert(std::make_pair(VTy,Plane())).first;
DestSlot = I->second.map[V] = I->second.next_slot++;
} else {
TypedPlanes::iterator I = mMap.find( VTy );
if ( I == mMap.end() )
I = mMap.insert(std::make_pair(VTy,Plane())).first;
DestSlot = I->second.map[V] = I->second.next_slot++;
}
SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, C = Constant, T = Type, F = Function, o = other
SC_DEBUG((isa<GlobalVariable>(V) ? "G" : (isa<Constant>(V) ? "C" :
(isa<Function>(V) ? "F" : "o"))));
SC_DEBUG("]\n");
return DestSlot;
}
// vim: sw=2