mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
implement the non-relocation forms of memory operands
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95368 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
5f94193b36
commit
0e73c39c70
@ -50,6 +50,9 @@ public:
|
||||
Val >>= 8;
|
||||
}
|
||||
}
|
||||
|
||||
void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
|
||||
int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
|
||||
|
||||
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
||||
unsigned RM) {
|
||||
@ -62,6 +65,13 @@ public:
|
||||
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
|
||||
}
|
||||
|
||||
void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
|
||||
raw_ostream &OS) const {
|
||||
// SIB byte is in the same format as the ModRMByte...
|
||||
EmitByte(ModRMByte(SS, Index, Base), OS);
|
||||
}
|
||||
|
||||
|
||||
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
unsigned RegOpcodeField, intptr_t PCAdj,
|
||||
raw_ostream &OS) const;
|
||||
@ -85,6 +95,45 @@ static bool isDisp8(int Value) {
|
||||
return Value == (signed char)Value;
|
||||
}
|
||||
|
||||
void X86MCCodeEmitter::
|
||||
EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
|
||||
int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
|
||||
// If this is a simple integer displacement that doesn't require a relocation,
|
||||
// emit it now.
|
||||
if (!RelocOp) {
|
||||
EmitConstant(DispVal, 4, OS);
|
||||
return;
|
||||
}
|
||||
|
||||
assert(0 && "Reloc not handled yet");
|
||||
#if 0
|
||||
// Otherwise, this is something that requires a relocation. Emit it as such
|
||||
// now.
|
||||
unsigned RelocType = Is64BitMode ?
|
||||
(IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
|
||||
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
||||
if (RelocOp->isGlobal()) {
|
||||
// In 64-bit static small code model, we could potentially emit absolute.
|
||||
// But it's probably not beneficial. If the MCE supports using RIP directly
|
||||
// do it, otherwise fallback to absolute (this is determined by IsPCRel).
|
||||
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
|
||||
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
|
||||
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
|
||||
emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
|
||||
Adj, Indirect);
|
||||
} else if (RelocOp->isSymbol()) {
|
||||
emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
|
||||
} else if (RelocOp->isCPI()) {
|
||||
emitConstPoolAddress(RelocOp->getIndex(), RelocType,
|
||||
RelocOp->getOffset(), Adj);
|
||||
} else {
|
||||
assert(RelocOp->isJTI() && "Unexpected machine operand!");
|
||||
emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
unsigned RegOpcodeField,
|
||||
intptr_t PCAdj,
|
||||
@ -97,6 +146,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
if (Op3.isImm()) {
|
||||
DispVal = Op3.getImm();
|
||||
} else {
|
||||
assert(0 && "Unknown operand");
|
||||
#if 0
|
||||
if (Op3.isGlobal()) {
|
||||
DispForReloc = &Op3;
|
||||
@ -120,10 +170,13 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
}
|
||||
|
||||
const MCOperand &Base = MI.getOperand(Op);
|
||||
//const MCOperand &Scale = MI.getOperand(Op+1);
|
||||
const MCOperand &Scale = MI.getOperand(Op+1);
|
||||
const MCOperand &IndexReg = MI.getOperand(Op+2);
|
||||
unsigned BaseReg = Base.getReg();
|
||||
|
||||
// FIXME: Eliminate!
|
||||
bool IsPCRel = false;
|
||||
|
||||
// Is a SIB byte needed?
|
||||
// If no BaseReg, issue a RIP relative instruction only if the MCE can
|
||||
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
|
||||
@ -134,9 +187,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
|
||||
// Emit special case [disp32] encoding
|
||||
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
|
||||
#if 0
|
||||
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
|
||||
#endif
|
||||
EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
|
||||
} else {
|
||||
unsigned BaseRegNo = GetX86RegNum(Base);
|
||||
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
|
||||
@ -149,71 +200,66 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
||||
} else {
|
||||
// Emit the most general non-SIB encoding: [REG+disp32]
|
||||
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
|
||||
#if 0
|
||||
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
|
||||
#endif
|
||||
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
|
||||
}
|
||||
}
|
||||
|
||||
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
|
||||
assert(IndexReg.getReg() != X86::ESP &&
|
||||
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
|
||||
|
||||
bool ForceDisp32 = false;
|
||||
bool ForceDisp8 = false;
|
||||
if (BaseReg == 0) {
|
||||
// If there is no base register, we emit the special case SIB byte with
|
||||
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
||||
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
||||
ForceDisp32 = true;
|
||||
} else if (DispForReloc) {
|
||||
// Emit the normal disp32 encoding.
|
||||
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
||||
ForceDisp32 = true;
|
||||
} else if (DispVal == 0 && BaseReg != X86::EBP) {
|
||||
// Emit no displacement ModR/M byte
|
||||
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
||||
} else if (isDisp8(DispVal)) {
|
||||
// Emit the disp8 encoding.
|
||||
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
|
||||
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
||||
} else {
|
||||
// Emit the normal disp32 encoding.
|
||||
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
||||
}
|
||||
|
||||
#if 0
|
||||
// Calculate what the SS field value should be...
|
||||
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
||||
unsigned SS = SSTable[Scale.getImm()];
|
||||
|
||||
if (BaseReg == 0) {
|
||||
// Handle the SIB byte for the case where there is no base, see Intel
|
||||
// Manual 2A, table 2-7. The displacement has already been output.
|
||||
unsigned IndexRegNo;
|
||||
if (IndexReg.getReg())
|
||||
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
||||
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
|
||||
IndexRegNo = 4;
|
||||
emitSIBByte(SS, IndexRegNo, 5);
|
||||
} else {
|
||||
unsigned BaseRegNo = getX86RegNum(BaseReg);
|
||||
unsigned IndexRegNo;
|
||||
if (IndexReg.getReg())
|
||||
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
||||
else
|
||||
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
||||
emitSIBByte(SS, IndexRegNo, BaseRegNo);
|
||||
}
|
||||
|
||||
// Do we need to output a displacement?
|
||||
if (ForceDisp8) {
|
||||
emitConstant(DispVal, 1);
|
||||
} else if (DispVal != 0 || ForceDisp32) {
|
||||
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
|
||||
}
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
// We need a SIB byte, so start by outputting the ModR/M byte first
|
||||
assert(IndexReg.getReg() != X86::ESP &&
|
||||
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
|
||||
|
||||
bool ForceDisp32 = false;
|
||||
bool ForceDisp8 = false;
|
||||
if (BaseReg == 0) {
|
||||
// If there is no base register, we emit the special case SIB byte with
|
||||
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
||||
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
||||
ForceDisp32 = true;
|
||||
} else if (DispForReloc) {
|
||||
// Emit the normal disp32 encoding.
|
||||
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
||||
ForceDisp32 = true;
|
||||
} else if (DispVal == 0 && BaseReg != X86::EBP) {
|
||||
// Emit no displacement ModR/M byte
|
||||
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
||||
} else if (isDisp8(DispVal)) {
|
||||
// Emit the disp8 encoding.
|
||||
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
|
||||
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
||||
} else {
|
||||
// Emit the normal disp32 encoding.
|
||||
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
||||
}
|
||||
|
||||
// Calculate what the SS field value should be...
|
||||
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
||||
unsigned SS = SSTable[Scale.getImm()];
|
||||
|
||||
if (BaseReg == 0) {
|
||||
// Handle the SIB byte for the case where there is no base, see Intel
|
||||
// Manual 2A, table 2-7. The displacement has already been output.
|
||||
unsigned IndexRegNo;
|
||||
if (IndexReg.getReg())
|
||||
IndexRegNo = GetX86RegNum(IndexReg);
|
||||
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
|
||||
IndexRegNo = 4;
|
||||
EmitSIBByte(SS, IndexRegNo, 5, OS);
|
||||
} else {
|
||||
unsigned IndexRegNo;
|
||||
if (IndexReg.getReg())
|
||||
IndexRegNo = GetX86RegNum(IndexReg);
|
||||
else
|
||||
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
||||
EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
|
||||
}
|
||||
|
||||
// Do we need to output a displacement?
|
||||
if (ForceDisp8)
|
||||
EmitConstant(DispVal, 1, OS);
|
||||
else if (DispVal != 0 || ForceDisp32)
|
||||
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user