Kill ObjectCodeEmitter and BinaryObject, they were unused and superseded by MC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147618 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2012-01-05 22:31:37 +00:00
parent 720ac91969
commit 1031111f84
4 changed files with 0 additions and 666 deletions

View File

@ -1,353 +0,0 @@
//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Binary Object Aka. "blob" for holding data from code
// generators, ready for data to the object module code writters.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BINARYOBJECT_H
#define LLVM_CODEGEN_BINARYOBJECT_H
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Support/DataTypes.h"
#include <string>
#include <vector>
namespace llvm {
typedef std::vector<uint8_t> BinaryData;
class BinaryObject {
protected:
std::string Name;
bool IsLittleEndian;
bool Is64Bit;
BinaryData Data;
std::vector<MachineRelocation> Relocations;
public:
/// Constructors and destructor
BinaryObject() {}
BinaryObject(bool isLittleEndian, bool is64Bit)
: IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit)
: Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
~BinaryObject() {}
/// getName - get name of BinaryObject
inline std::string getName() const { return Name; }
/// get size of binary data
size_t size() const {
return Data.size();
}
/// get binary data
BinaryData& getData() {
return Data;
}
/// get machine relocations
const std::vector<MachineRelocation>& getRelocations() const {
return Relocations;
}
/// hasRelocations - Return true if 'Relocations' is not empty
bool hasRelocations() const {
return !Relocations.empty();
}
/// emitZeros - This callback is invoked to emit a arbitrary number
/// of zero bytes to the data stream.
inline void emitZeros(unsigned Size) {
for (unsigned i=0; i < Size; ++i)
emitByte(0);
}
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream.
inline void emitByte(uint8_t B) {
Data.push_back(B);
}
/// emitWord16 - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16(uint16_t W) {
if (IsLittleEndian)
emitWord16LE(W);
else
emitWord16BE(W);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16LE(uint16_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
}
/// emitWord16BE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16BE(uint16_t W) {
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// emitWord - This callback is invoked when a word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord(uint64_t W) {
if (!Is64Bit)
emitWord32(W);
else
emitWord64(W);
}
/// emitWord32 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord32(uint32_t W) {
if (IsLittleEndian)
emitWordLE(W);
else
emitWordBE(W);
}
/// emitWord64 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord64(uint64_t W) {
if (IsLittleEndian)
emitDWordLE(W);
else
emitDWordBE(W);
}
/// emitWord64 - This callback is invoked when a x86_fp80 needs to be
/// written to the data stream in correct endian format.
inline void emitWordFP80(const uint64_t *W, unsigned PadSize) {
if (IsLittleEndian) {
emitWord64(W[0]);
emitWord16(W[1]);
} else {
emitWord16(W[1]);
emitWord64(W[0]);
}
emitZeros(PadSize);
}
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitWordLE(uint32_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 24));
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
///
inline void emitWordBE(uint32_t W) {
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitDWordLE(uint64_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 32));
Data.push_back((uint8_t)(W >> 40));
Data.push_back((uint8_t)(W >> 48));
Data.push_back((uint8_t)(W >> 56));
}
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
inline void emitDWordBE(uint64_t W) {
Data.push_back((uint8_t)(W >> 56));
Data.push_back((uint8_t)(W >> 48));
Data.push_back((uint8_t)(W >> 40));
Data.push_back((uint8_t)(W >> 32));
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// fixByte - This callback is invoked when a byte needs to be
/// fixup the buffer.
inline void fixByte(uint8_t B, uint32_t offset) {
Data[offset] = B;
}
/// fixWord16 - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in correct endian format.
inline void fixWord16(uint16_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord16LE(W, offset);
else
fixWord16BE(W, offset);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in little endian format.
inline void fixWord16LE(uint16_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
}
/// fixWord16BE - This callback is invoked when a 16-bit word needs to
/// fixup data stream in big endian format.
inline void fixWord16BE(uint16_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// emitWord - This callback is invoked when a word needs to
/// fixup the data in correct endian format and correct size.
inline void fixWord(uint64_t W, uint32_t offset) {
if (!Is64Bit)
fixWord32(W, offset);
else
fixWord64(W, offset);
}
/// fixWord32 - This callback is invoked when a 32-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord32(uint32_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord32LE(W, offset);
else
fixWord32BE(W, offset);
}
/// fixWord32LE - This callback is invoked when a 32-bit word needs to
/// fixup the data in little endian format.
inline void fixWord32LE(uint32_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 24);
}
/// fixWord32BE - This callback is invoked when a 32-bit word needs to
/// fixup the data in big endian format.
inline void fixWord32BE(uint32_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// fixWord64 - This callback is invoked when a 64-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord64(uint64_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord64LE(W, offset);
else
fixWord64BE(W, offset);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in little endian format.
inline void fixWord64LE(uint64_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 32);
Data[++offset] = (uint8_t)(W >> 40);
Data[++offset] = (uint8_t)(W >> 48);
Data[++offset] = (uint8_t)(W >> 56);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in big endian format.
inline void fixWord64BE(uint64_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 56);
Data[++offset] = (uint8_t)(W >> 48);
Data[++offset] = (uint8_t)(W >> 40);
Data[++offset] = (uint8_t)(W >> 32);
Data[++offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// emitAlignment - Pad the data to the specified alignment.
void emitAlignment(unsigned Alignment, uint8_t fill = 0) {
if (Alignment <= 1) return;
unsigned PadSize = -Data.size() & (Alignment-1);
for (unsigned i = 0; i<PadSize; ++i)
Data.push_back(fill);
}
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void emitULEB128Bytes(uint64_t Value) {
do {
uint8_t Byte = (uint8_t)(Value & 0x7f);
Value >>= 7;
if (Value) Byte |= 0x80;
emitByte(Byte);
} while (Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void emitSLEB128Bytes(int64_t Value) {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
uint8_t Byte = (uint8_t)(Value & 0x7f);
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
emitByte(Byte);
} while (IsMore);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void emitString(const std::string &String) {
for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) {
unsigned char C = String[i];
emitByte(C);
}
emitByte(0);
}
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t getCurrentPCOffset() const {
return Data.size();
}
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void addRelocation(const MachineRelocation& relocation) {
Relocations.push_back(relocation);
}
};
} // end namespace llvm
#endif

View File

@ -1,171 +0,0 @@
//===-- llvm/CodeGen/ObjectCodeEmitter.h - Object Code Emitter -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Generalized Object Code Emitter, works with ObjectModule and BinaryObject.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_OBJECTCODEEMITTER_H
#define LLVM_CODEGEN_OBJECTCODEEMITTER_H
#include "llvm/CodeGen/MachineCodeEmitter.h"
namespace llvm {
class BinaryObject;
class MachineBasicBlock;
class MachineCodeEmitter;
class MachineFunction;
class MachineConstantPool;
class MachineJumpTableInfo;
class MachineModuleInfo;
class ObjectCodeEmitter : public MachineCodeEmitter {
protected:
/// Binary Object (Section or Segment) we are emitting to.
BinaryObject *BO;
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
/// It is filled in by the StartMachineBasicBlock callback and queried by
/// the getMachineBasicBlockAddress callback.
std::vector<uintptr_t> MBBLocations;
/// LabelLocations - This vector is a mapping from Label ID's to their
/// address.
std::vector<uintptr_t> LabelLocations;
/// CPLocations - This is a map of constant pool indices to offsets from the
/// start of the section for that constant pool index.
std::vector<uintptr_t> CPLocations;
/// CPSections - This is a map of constant pool indices to the Section
/// containing the constant pool entry for that index.
std::vector<uintptr_t> CPSections;
/// JTLocations - This is a map of jump table indices to offsets from the
/// start of the section for that jump table index.
std::vector<uintptr_t> JTLocations;
public:
ObjectCodeEmitter();
ObjectCodeEmitter(BinaryObject *bo);
virtual ~ObjectCodeEmitter();
/// setBinaryObject - set the BinaryObject we are writting to
void setBinaryObject(BinaryObject *bo);
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream, without buffer overflow testing.
void emitByte(uint8_t B);
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
void emitWordLE(uint32_t W);
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
void emitWordBE(uint32_t W);
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
void emitDWordLE(uint64_t W);
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
void emitDWordBE(uint64_t W);
/// emitAlignment - Move the CurBufferPtr pointer up to the specified
/// alignment (saturated to BufferEnd of course).
void emitAlignment(unsigned Alignment = 0, uint8_t fill = 0);
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void emitULEB128Bytes(uint64_t Value);
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void emitSLEB128Bytes(uint64_t Value);
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void emitString(const std::string &String);
/// getCurrentPCValue - This returns the address that the next emitted byte
/// will be output to.
uintptr_t getCurrentPCValue() const;
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t getCurrentPCOffset() const;
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void addRelocation(const MachineRelocation& relocation);
/// earlyResolveAddresses - True if the code emitter can use symbol addresses
/// during code emission time. The JIT is capable of doing this because it
/// creates jump tables or constant pools in memory on the fly while the
/// object code emitters rely on a linker to have real addresses and should
/// use relocations instead.
bool earlyResolveAddresses() const { return false; }
/// startFunction - This callback is invoked when the specified function is
/// about to be code generated. This initializes the BufferBegin/End/Ptr
/// fields.
virtual void startFunction(MachineFunction &F) = 0;
/// finishFunction - This callback is invoked when the specified function has
/// finished code generation. If a buffer overflow has occurred, this method
/// returns true (the callee is required to try again), otherwise it returns
/// false.
virtual bool finishFunction(MachineFunction &F) = 0;
/// StartMachineBasicBlock - This should be called by the target when a new
/// basic block is about to be emitted. This way the MCE knows where the
/// start of the block is, and can implement getMachineBasicBlockAddress.
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB);
/// getMachineBasicBlockAddress - Return the address of the specified
/// MachineBasicBlock, only usable after the label for the MBB has been
/// emitted.
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const;
/// emitJumpTables - Emit all the jump tables for a given jump table info
/// record to the appropriate section.
virtual void emitJumpTables(MachineJumpTableInfo *MJTI) = 0;
/// getJumpTableEntryAddress - Return the address of the jump table with index
/// 'Index' in the function that last called initJumpTableInfo.
virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const;
/// emitConstantPool - For each constant pool entry, figure out which section
/// the constant should live in, allocate space for it, and emit it to the
/// Section data buffer.
virtual void emitConstantPool(MachineConstantPool *MCP) = 0;
/// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
/// the constant pool that was last emitted with the emitConstantPool method.
virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const;
/// getConstantPoolEntrySection - Return the section of the 'Index' entry in
/// the constant pool that was last emitted with the emitConstantPool method.
virtual uintptr_t getConstantPoolEntrySection(unsigned Index) const;
/// Specifies the MachineModuleInfo object. This is used for exception handling
/// purposes.
virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
// to be implemented or depreciated with MachineModuleInfo
}; // end class ObjectCodeEmitter
} // end namespace llvm
#endif

View File

@ -58,7 +58,6 @@ add_llvm_library(LLVMCodeGen
MachineSSAUpdater.cpp
MachineSink.cpp
MachineVerifier.cpp
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp
PHIElimination.cpp

View File

@ -1,141 +0,0 @@
//===-- llvm/CodeGen/ObjectCodeEmitter.cpp -------------------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/CodeGen/ObjectCodeEmitter.h"
//===----------------------------------------------------------------------===//
// ObjectCodeEmitter Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
ObjectCodeEmitter::ObjectCodeEmitter() : BO(0) {}
ObjectCodeEmitter::ObjectCodeEmitter(BinaryObject *bo) : BO(bo) {}
ObjectCodeEmitter::~ObjectCodeEmitter() {}
/// setBinaryObject - set the BinaryObject we are writting to
void ObjectCodeEmitter::setBinaryObject(BinaryObject *bo) { BO = bo; }
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream, without buffer overflow testing.
void ObjectCodeEmitter::emitByte(uint8_t B) {
BO->emitByte(B);
}
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
void ObjectCodeEmitter::emitWordLE(uint32_t W) {
BO->emitWordLE(W);
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
void ObjectCodeEmitter::emitWordBE(uint32_t W) {
BO->emitWordBE(W);
}
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
void ObjectCodeEmitter::emitDWordLE(uint64_t W) {
BO->emitDWordLE(W);
}
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
void ObjectCodeEmitter::emitDWordBE(uint64_t W) {
BO->emitDWordBE(W);
}
/// emitAlignment - Align 'BO' to the necessary alignment boundary.
void ObjectCodeEmitter::emitAlignment(unsigned Alignment /* 0 */,
uint8_t fill /* 0 */) {
BO->emitAlignment(Alignment, fill);
}
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void ObjectCodeEmitter::emitULEB128Bytes(uint64_t Value) {
BO->emitULEB128Bytes(Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void ObjectCodeEmitter::emitSLEB128Bytes(uint64_t Value) {
BO->emitSLEB128Bytes(Value);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void ObjectCodeEmitter::emitString(const std::string &String) {
BO->emitString(String);
}
/// getCurrentPCValue - This returns the address that the next emitted byte
/// will be output to.
uintptr_t ObjectCodeEmitter::getCurrentPCValue() const {
return BO->getCurrentPCOffset();
}
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t ObjectCodeEmitter::getCurrentPCOffset() const {
return BO->getCurrentPCOffset();
}
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void ObjectCodeEmitter::addRelocation(const MachineRelocation& relocation) {
BO->addRelocation(relocation);
}
/// StartMachineBasicBlock - This should be called by the target when a new
/// basic block is about to be emitted. This way the MCE knows where the
/// start of the block is, and can implement getMachineBasicBlockAddress.
void ObjectCodeEmitter::StartMachineBasicBlock(MachineBasicBlock *MBB) {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
}
/// getMachineBasicBlockAddress - Return the address of the specified
/// MachineBasicBlock, only usable after the label for the MBB has been
/// emitted.
uintptr_t
ObjectCodeEmitter::getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
return MBBLocations[MBB->getNumber()];
}
/// getJumpTableEntryAddress - Return the address of the jump table with index
/// 'Index' in the function that last called initJumpTableInfo.
uintptr_t ObjectCodeEmitter::getJumpTableEntryAddress(unsigned Index) const {
assert(JTLocations.size() > Index && "JT not emitted!");
return JTLocations[Index];
}
/// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
/// the constant pool that was last emitted with the emitConstantPool method.
uintptr_t ObjectCodeEmitter::getConstantPoolEntryAddress(unsigned Index) const {
assert(CPLocations.size() > Index && "CP not emitted!");
return CPLocations[Index];
}
/// getConstantPoolEntrySection - Return the section of the 'Index' entry in
/// the constant pool that was last emitted with the emitConstantPool method.
uintptr_t ObjectCodeEmitter::getConstantPoolEntrySection(unsigned Index) const {
assert(CPSections.size() > Index && "CP not emitted!");
return CPSections[Index];
}
} // end namespace llvm