mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-09-19 04:26:05 +00:00
LoopVectorize: Vectorize all accesses in address space zero with unit stride
We can vectorize them because in the case where we wrap in the address space the unvectorized code would have had to access a pointer value of zero which is undefined behavior in address space zero according to the LLVM IR semantics. (Thank you Duncan, for pointing this out to me). Fixes PR16592. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186088 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -3223,11 +3223,12 @@ static bool isInBoundsGep(Value *Ptr) {
|
|||||||
/// \brief Check whether the access through \p Ptr has a constant stride.
|
/// \brief Check whether the access through \p Ptr has a constant stride.
|
||||||
static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
|
static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
|
||||||
const Loop *Lp) {
|
const Loop *Lp) {
|
||||||
const Type *PtrTy = Ptr->getType();
|
const Type *Ty = Ptr->getType();
|
||||||
assert(PtrTy->isPointerTy() && "Unexpected non ptr");
|
assert(Ty->isPointerTy() && "Unexpected non ptr");
|
||||||
|
|
||||||
// Make sure that the pointer does not point to aggregate types.
|
// Make sure that the pointer does not point to aggregate types.
|
||||||
if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) {
|
const PointerType *PtrTy = cast<PointerType>(Ty);
|
||||||
|
if (PtrTy->getElementType()->isAggregateType()) {
|
||||||
DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr
|
DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr
|
||||||
<< "\n");
|
<< "\n");
|
||||||
return 0;
|
return 0;
|
||||||
@@ -3248,11 +3249,16 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
|
|||||||
}
|
}
|
||||||
|
|
||||||
// The address calculation must not wrap. Otherwise, a dependence could be
|
// The address calculation must not wrap. Otherwise, a dependence could be
|
||||||
// inverted. An inbounds getelementptr that is a AddRec with a unit stride
|
// inverted.
|
||||||
|
// An inbounds getelementptr that is a AddRec with a unit stride
|
||||||
// cannot wrap per definition. The unit stride requirement is checked later.
|
// cannot wrap per definition. The unit stride requirement is checked later.
|
||||||
|
// An getelementptr without an inbounds attribute and unit stride would have
|
||||||
|
// to access the pointer value "0" which is undefined behavior in address
|
||||||
|
// space 0, therefore we can also vectorize this case.
|
||||||
bool IsInBoundsGEP = isInBoundsGep(Ptr);
|
bool IsInBoundsGEP = isInBoundsGep(Ptr);
|
||||||
bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
|
bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
|
||||||
if (!IsNoWrapAddRec && !IsInBoundsGEP) {
|
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
|
||||||
|
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
|
||||||
DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
|
DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
|
||||||
<< *Ptr << " SCEV: " << *PtrScev << "\n");
|
<< *Ptr << " SCEV: " << *PtrScev << "\n");
|
||||||
return 0;
|
return 0;
|
||||||
@@ -3269,7 +3275,7 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int64_t Size = DL->getTypeAllocSize(PtrTy->getPointerElementType());
|
int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
|
||||||
const APInt &APStepVal = C->getValue()->getValue();
|
const APInt &APStepVal = C->getValue()->getValue();
|
||||||
|
|
||||||
// Huge step value - give up.
|
// Huge step value - give up.
|
||||||
@@ -3285,8 +3291,10 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
|
|||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
// If the SCEV could wrap but we have an inbounds gep with a unit stride we
|
// If the SCEV could wrap but we have an inbounds gep with a unit stride we
|
||||||
// know we can't "wrap around the address space".
|
// know we can't "wrap around the address space". In case of address space
|
||||||
if (!IsNoWrapAddRec && IsInBoundsGEP && Stride != 1 && Stride != -1)
|
// zero we know that this won't happen without triggering undefined behavior.
|
||||||
|
if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
|
||||||
|
Stride != 1 && Stride != -1)
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
return Stride;
|
return Stride;
|
||||||
|
61
test/Transforms/LoopVectorize/safegep.ll
Normal file
61
test/Transforms/LoopVectorize/safegep.ll
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
; RUN: opt -S -loop-vectorize -force-vector-width=4 -force-vector-unroll=1 < %s | FileCheck %s
|
||||||
|
target datalayout = "e-p:32:32:32-S128-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f16:16:16-f32:32:32-f64:32:64-f128:128:128-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"
|
||||||
|
|
||||||
|
|
||||||
|
; We can vectorize this code because if the address computation would wrap then
|
||||||
|
; a load from 0 would take place which is undefined behaviour in address space 0
|
||||||
|
; according to LLVM IR semantics.
|
||||||
|
|
||||||
|
; PR16592
|
||||||
|
|
||||||
|
; CHECK: safe
|
||||||
|
; CHECK: <4 x float>
|
||||||
|
|
||||||
|
define void @safe(float* %A, float* %B, float %K) {
|
||||||
|
entry:
|
||||||
|
br label %"<bb 3>"
|
||||||
|
|
||||||
|
"<bb 3>":
|
||||||
|
%i_15 = phi i32 [ 0, %entry ], [ %i_19, %"<bb 3>" ]
|
||||||
|
%pp3 = getelementptr float* %A, i32 %i_15
|
||||||
|
%D.1396_10 = load float* %pp3, align 4
|
||||||
|
%pp24 = getelementptr float* %B, i32 %i_15
|
||||||
|
%D.1398_15 = load float* %pp24, align 4
|
||||||
|
%D.1399_17 = fadd float %D.1398_15, %K
|
||||||
|
%D.1400_18 = fmul float %D.1396_10, %D.1399_17
|
||||||
|
store float %D.1400_18, float* %pp3, align 4
|
||||||
|
%i_19 = add nsw i32 %i_15, 1
|
||||||
|
%exitcond = icmp ne i32 %i_19, 64
|
||||||
|
br i1 %exitcond, label %"<bb 3>", label %return
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret void
|
||||||
|
}
|
||||||
|
|
||||||
|
; In a non-default address space we don't have this rule.
|
||||||
|
|
||||||
|
; CHECK: notsafe
|
||||||
|
; CHECK-NOT: <4 x float>
|
||||||
|
|
||||||
|
define void @notsafe(float addrspace(5) * %A, float* %B, float %K) {
|
||||||
|
entry:
|
||||||
|
br label %"<bb 3>"
|
||||||
|
|
||||||
|
"<bb 3>":
|
||||||
|
%i_15 = phi i32 [ 0, %entry ], [ %i_19, %"<bb 3>" ]
|
||||||
|
%pp3 = getelementptr float addrspace(5) * %A, i32 %i_15
|
||||||
|
%D.1396_10 = load float addrspace(5) * %pp3, align 4
|
||||||
|
%pp24 = getelementptr float* %B, i32 %i_15
|
||||||
|
%D.1398_15 = load float* %pp24, align 4
|
||||||
|
%D.1399_17 = fadd float %D.1398_15, %K
|
||||||
|
%D.1400_18 = fmul float %D.1396_10, %D.1399_17
|
||||||
|
store float %D.1400_18, float addrspace(5) * %pp3, align 4
|
||||||
|
%i_19 = add nsw i32 %i_15, 1
|
||||||
|
%exitcond = icmp ne i32 %i_19, 64
|
||||||
|
br i1 %exitcond, label %"<bb 3>", label %return
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret void
|
||||||
|
}
|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user