LoopVectorize: Handle loops with multiple forward inductions

We used to give up if we saw two integer inductions. After this patch, we base
further induction variables on the chosen one like we do in the reverse
induction and pointer induction case.

Fixes PR15720.

radar://13851975

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181746 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Arnold Schwaighofer 2013-05-14 00:21:18 +00:00
parent dba53a8c9d
commit 123f18bcb9
2 changed files with 70 additions and 17 deletions

View File

@ -1389,9 +1389,10 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
case LoopVectorizationLegality::IK_IntInduction: {
// Handle the integer induction counter:
// Handle the integer induction counter.
assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
assert(OrigPhi == OldInduction && "Unknown integer PHI");
// We have the canonical induction variable.
if (OrigPhi == OldInduction) {
// Create a truncated version of the resume value for the scalar loop,
// we might have promoted the type to a larger width.
@ -1402,11 +1403,20 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
TruncResumeVal->addIncoming(EndValue, VecBody);
// We know what the end value is.
EndValue = IdxEndRoundDown;
// We also know which PHI node holds it.
ResumeIndex = ResumeVal;
break;
}
// We know what the end value is.
EndValue = IdxEndRoundDown;
// We also know which PHI node holds it.
ResumeIndex = ResumeVal;
// Not the canonical induction variable - add the vector loop count to the
// start value.
Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
II.StartValue->getType(),
"cast.crd");
EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
break;
}
case LoopVectorizationLegality::IK_ReverseIntInduction: {
@ -2056,12 +2066,25 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
case LoopVectorizationLegality::IK_IntInduction: {
assert(P == OldInduction && "Unexpected PHI");
// We might have had to extend the type.
Value *Trunc = Builder.CreateTrunc(Induction, P->getType());
Value *Broadcasted = getBroadcastInstrs(Trunc);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding 0, 1, 2 ...
assert(P->getType() == II.StartValue->getType() && "Types must match");
Type *PhiTy = P->getType();
Value *Broadcasted;
if (P == OldInduction) {
// Handle the canonical induction variable. We might have had to
// extend the type.
Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
} else {
// Handle other induction variables that are now based on the
// canonical one.
Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
"normalized.idx");
NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
"offset.idx");
}
Broadcasted = getBroadcastInstrs(Broadcasted);
// After broadcasting the induction variable we need to make the vector
// consecutive by adding 0, 1, 2, etc.
for (unsigned part = 0; part < UF; ++part)
Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
continue;
@ -2466,11 +2489,11 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Int inductions are special because we only allow one IV.
if (IK == IK_IntInduction) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
return false;
}
Induction = Phi;
// Use the phi node with the widest type as induction. Use the last
// one if there are multiple (no good reason for doing this other
// than it is expedient).
if (!Induction || PhiTy == WidestIndTy)
Induction = Phi;
}
DEBUG(dbgs() << "LV: Found an induction variable.\n");

View File

@ -0,0 +1,30 @@
; RUN: opt < %s -loop-vectorize -force-vector-unroll=1 -force-vector-width=2 -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; Make sure that we can handle multiple integer induction variables.
; CHECK: multi_int_induction
; CHECK: vector.body:
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %normalized.idx = sub i64 %index, 0
; CHECK: %[[VAR:.*]] = trunc i64 %normalized.idx to i32
; CHECK: %offset.idx = add i32 190, %[[VAR]]
define void @multi_int_induction(i32* %A, i32 %N) {
for.body.lr.ph:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
%arrayidx2 = getelementptr inbounds i32* %A, i64 %indvars.iv
store i32 %count.09, i32* %arrayidx2, align 4
%inc = add nsw i32 %count.09, 1
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp ne i32 %lftr.wideiv, %N
br i1 %exitcond, label %for.body, label %for.end
for.end:
ret void
}