Modify the two address instruction pass to remove the duplicate

operand of the instruction and thus simplify the register allocation.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11124 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Alkis Evlogimenos
2004-02-04 22:17:40 +00:00
parent a33ceaa2d4
commit 14be64018f
11 changed files with 227 additions and 232 deletions

View File

@@ -67,16 +67,36 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
// immediate despite the fact that the operands are 16 or 32 bits. Because
// this can save three bytes of code size (and icache space), we want to
// shrink them if possible.
case X86::ADDri16: case X86::ADDri32:
case X86::SUBri16: case X86::SUBri32:
case X86::IMULri16: case X86::IMULri32:
case X86::ANDri16: case X86::ANDri32:
case X86::ORri16: case X86::ORri32:
case X86::XORri16: case X86::XORri32:
assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
if (MI->getOperand(2).isImmediate()) {
int Val = MI->getOperand(2).getImmedValue();
// If the value is the same when signed extended from 8 bits...
if (Val == (signed int)(signed char)Val) {
unsigned Opcode;
switch (MI->getOpcode()) {
default: assert(0 && "Unknown opcode value!");
case X86::IMULri16: Opcode = X86::IMULri16b; break;
case X86::IMULri32: Opcode = X86::IMULri32b; break;
}
unsigned R0 = MI->getOperand(0).getReg();
unsigned R1 = MI->getOperand(1).getReg();
*I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
delete MI;
return true;
}
}
return false;
case X86::ADDri16: case X86::ADDri32:
case X86::SUBri16: case X86::SUBri32:
case X86::ANDri16: case X86::ANDri32:
case X86::ORri16: case X86::ORri32:
case X86::XORri16: case X86::XORri32:
assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
if (MI->getOperand(1).isImmediate()) {
int Val = MI->getOperand(1).getImmedValue();
// If the value is the same when signed extended from 8 bits...
if (Val == (signed int)(signed char)Val) {
unsigned Opcode;
switch (MI->getOpcode()) {
@@ -85,8 +105,6 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
case X86::ADDri32: Opcode = X86::ADDri32b; break;
case X86::SUBri16: Opcode = X86::SUBri16b; break;
case X86::SUBri32: Opcode = X86::SUBri32b; break;
case X86::IMULri16: Opcode = X86::IMULri16b; break;
case X86::IMULri32: Opcode = X86::IMULri32b; break;
case X86::ANDri16: Opcode = X86::ANDri16b; break;
case X86::ANDri32: Opcode = X86::ANDri32b; break;
case X86::ORri16: Opcode = X86::ORri16b; break;
@@ -95,8 +113,7 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
case X86::XORri32: Opcode = X86::XORri32b; break;
}
unsigned R0 = MI->getOperand(0).getReg();
unsigned R1 = MI->getOperand(1).getReg();
*I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
*I = BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val);
delete MI;
return true;
}

View File

@@ -609,35 +609,31 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 2,
// 3 and 4 operands:
// There are three forms of MRMDestReg instructions, those with 2
// or 3 operands:
//
// 2 Operands: this is for things like mov that do not read a second input
// 2 Operands: this is for things like mov that do not read a
// second input.
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
// 2 Operands: two address instructions which def&use the first
// argument and use the second as input.
//
// 4 Operands: This form is for instructions which are 3 operands forms, but
// have a constant argument as well.
// 3 Operands: in this form, two address instructions are the same
// as in 2 but have a constant argument as well.
//
bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 2 ||
(isTwoAddr && MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
(MI->getNumOperands() == 3 ||
(MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
&& "Bad format for MRMDestReg!");
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
O << ", ";
printOp(MI->getOperand(1+isTwoAddr));
if (MI->getNumOperands() == 4) {
printOp(MI->getOperand(1));
if (MI->getNumOperands() == 3) {
O << ", ";
printOp(MI->getOperand(3));
printOp(MI->getOperand(2));
}
O << "\n";
return;
@@ -659,40 +655,35 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
}
case X86II::MRMSrcReg: {
// There are three forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
// There are three forms that are acceptable for MRMSrcReg
// instructions, those with 2 or 3 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
// 2 Operands: this is for things like mov that do not read a
// second input.
//
// 2 Operands: in this form, the last register is the ModR/M
// input. The first operand is a def&use. This is for things
// like: add r32, r/m32
//
// 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
// for instructions like the IMULri instructions.
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(MI->getOperand(0).isRegister() &&
MI->getOperand(1).isRegister() &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 &&
(MI->getOperand(2).isRegister() ||
MI->getOperand(2).isImmediate())))
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 &&
(MI->getOperand(2).isImmediate())))
&& "Bad format for MRMSrcReg!");
if (MI->getNumOperands() == 3 && !MI->getOperand(2).isImmediate() &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
// If this is IMULri* instructions, print the non-two-address operand.
if (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()) {
O << ", ";
printOp(MI->getOperand(1));
}
O << ", ";
printOp(MI->getOperand(MI->getNumOperands()-1));
printOp(MI->getOperand(1));
if (MI->getNumOperands() == 3) {
O << ", ";
printOp(MI->getOperand(2));
}
O << "\n";
return;
}
@@ -705,7 +696,7 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
&& "Bad format for MRMSrcMem!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";

View File

@@ -609,35 +609,31 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 2,
// 3 and 4 operands:
// There are three forms of MRMDestReg instructions, those with 2
// or 3 operands:
//
// 2 Operands: this is for things like mov that do not read a second input
// 2 Operands: this is for things like mov that do not read a
// second input.
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
// 2 Operands: two address instructions which def&use the first
// argument and use the second as input.
//
// 4 Operands: This form is for instructions which are 3 operands forms, but
// have a constant argument as well.
// 3 Operands: in this form, two address instructions are the same
// as in 2 but have a constant argument as well.
//
bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 2 ||
(isTwoAddr && MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
(MI->getNumOperands() == 3 ||
(MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
&& "Bad format for MRMDestReg!");
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
O << ", ";
printOp(MI->getOperand(1+isTwoAddr));
if (MI->getNumOperands() == 4) {
printOp(MI->getOperand(1));
if (MI->getNumOperands() == 3) {
O << ", ";
printOp(MI->getOperand(3));
printOp(MI->getOperand(2));
}
O << "\n";
return;
@@ -659,40 +655,35 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
}
case X86II::MRMSrcReg: {
// There are three forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
// There are three forms that are acceptable for MRMSrcReg
// instructions, those with 2 or 3 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
// 2 Operands: this is for things like mov that do not read a
// second input.
//
// 2 Operands: in this form, the last register is the ModR/M
// input. The first operand is a def&use. This is for things
// like: add r32, r/m32
//
// 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
// for instructions like the IMULri instructions.
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(MI->getOperand(0).isRegister() &&
MI->getOperand(1).isRegister() &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 &&
(MI->getOperand(2).isRegister() ||
MI->getOperand(2).isImmediate())))
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 &&
(MI->getOperand(2).isImmediate())))
&& "Bad format for MRMSrcReg!");
if (MI->getNumOperands() == 3 && !MI->getOperand(2).isImmediate() &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
// If this is IMULri* instructions, print the non-two-address operand.
if (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()) {
O << ", ";
printOp(MI->getOperand(1));
}
O << ", ";
printOp(MI->getOperand(MI->getNumOperands()-1));
printOp(MI->getOperand(1));
if (MI->getNumOperands() == 3) {
O << ", ";
printOp(MI->getOperand(2));
}
O << "\n";
return;
}
@@ -705,7 +696,7 @@ void Printer::printMachineInstruction(const MachineInstr *MI) {
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
&& "Bad format for MRMSrcMem!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";

View File

@@ -548,10 +548,10 @@ void Emitter::emitInstruction(MachineInstr &MI) {
case X86II::MRMDestReg: {
MCE.emitByte(BaseOpcode);
MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
if (MI.getNumOperands() == 4)
emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
emitRegModRMByte(MI.getOperand(0).getReg(),
getX86RegNum(MI.getOperand(1).getReg()));
if (MI.getNumOperands() == 3)
emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
break;
}
case X86II::MRMDestMem:
@@ -562,18 +562,10 @@ void Emitter::emitInstruction(MachineInstr &MI) {
case X86II::MRMSrcReg:
MCE.emitByte(BaseOpcode);
if (MI.getNumOperands() == 2) {
emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
} else if (MI.getOperand(2).isImmediate()) {
emitRegModRMByte(MI.getOperand(1).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
emitRegModRMByte(MI.getOperand(1).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
if (MI.getNumOperands() == 3)
emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
} else {
emitRegModRMByte(MI.getOperand(2).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
}
break;
case X86II::MRMSrcMem:

View File

@@ -67,16 +67,36 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
// immediate despite the fact that the operands are 16 or 32 bits. Because
// this can save three bytes of code size (and icache space), we want to
// shrink them if possible.
case X86::ADDri16: case X86::ADDri32:
case X86::SUBri16: case X86::SUBri32:
case X86::IMULri16: case X86::IMULri32:
case X86::ANDri16: case X86::ANDri32:
case X86::ORri16: case X86::ORri32:
case X86::XORri16: case X86::XORri32:
assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
if (MI->getOperand(2).isImmediate()) {
int Val = MI->getOperand(2).getImmedValue();
// If the value is the same when signed extended from 8 bits...
if (Val == (signed int)(signed char)Val) {
unsigned Opcode;
switch (MI->getOpcode()) {
default: assert(0 && "Unknown opcode value!");
case X86::IMULri16: Opcode = X86::IMULri16b; break;
case X86::IMULri32: Opcode = X86::IMULri32b; break;
}
unsigned R0 = MI->getOperand(0).getReg();
unsigned R1 = MI->getOperand(1).getReg();
*I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
delete MI;
return true;
}
}
return false;
case X86::ADDri16: case X86::ADDri32:
case X86::SUBri16: case X86::SUBri32:
case X86::ANDri16: case X86::ANDri32:
case X86::ORri16: case X86::ORri32:
case X86::XORri16: case X86::XORri32:
assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
if (MI->getOperand(1).isImmediate()) {
int Val = MI->getOperand(1).getImmedValue();
// If the value is the same when signed extended from 8 bits...
if (Val == (signed int)(signed char)Val) {
unsigned Opcode;
switch (MI->getOpcode()) {
@@ -85,8 +105,6 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
case X86::ADDri32: Opcode = X86::ADDri32b; break;
case X86::SUBri16: Opcode = X86::SUBri16b; break;
case X86::SUBri32: Opcode = X86::SUBri32b; break;
case X86::IMULri16: Opcode = X86::IMULri16b; break;
case X86::IMULri32: Opcode = X86::IMULri32b; break;
case X86::ANDri16: Opcode = X86::ANDri16b; break;
case X86::ANDri32: Opcode = X86::ANDri32b; break;
case X86::ORri16: Opcode = X86::ORri16b; break;
@@ -95,8 +113,7 @@ bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
case X86::XORri32: Opcode = X86::XORri32b; break;
}
unsigned R0 = MI->getOperand(0).getReg();
unsigned R1 = MI->getOperand(1).getReg();
*I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
*I = BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val);
delete MI;
return true;
}

View File

@@ -110,10 +110,10 @@ int X86RegisterInfo::eliminateCallFramePseudoInstr(MachineFunction &MF,
Amount = (Amount+Align-1)/Align*Align;
if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
New=BuildMI(X86::SUBri32, 2, X86::ESP).addReg(X86::ESP).addZImm(Amount);
New=BuildMI(X86::SUBri32, 1, X86::ESP, MOTy::UseAndDef).addZImm(Amount);
} else {
assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
New=BuildMI(X86::ADDri32, 2, X86::ESP).addReg(X86::ESP).addZImm(Amount);
New=BuildMI(X86::ADDri32, 1, X86::ESP, MOTy::UseAndDef).addZImm(Amount);
}
}
}
@@ -181,7 +181,7 @@ int X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4;
if (NumBytes) { // adjust stack pointer: ESP -= numbytes
MI= BuildMI(X86::SUBri32, 2, X86::ESP).addReg(X86::ESP).addZImm(NumBytes);
MI= BuildMI(X86::SUBri32, 1, X86::ESP, MOTy::UseAndDef).addZImm(NumBytes);
MBBI = MBB.insert(MBBI, MI)+1;
}
@@ -215,7 +215,7 @@ int X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
if (NumBytes) {
// adjust stack pointer: ESP -= numbytes
MI= BuildMI(X86::SUBri32, 2, X86::ESP).addReg(X86::ESP).addZImm(NumBytes);
MI= BuildMI(X86::SUBri32, 1, X86::ESP, MOTy::UseAndDef).addZImm(NumBytes);
MBB.insert(MBBI, MI);
}
}
@@ -248,7 +248,7 @@ int X86RegisterInfo::emitEpilogue(MachineFunction &MF,
unsigned NumBytes = MFI->getStackSize();
if (NumBytes) { // adjust stack pointer back: ESP += numbytes
MI =BuildMI(X86::ADDri32, 2, X86::ESP).addReg(X86::ESP).addZImm(NumBytes);
MI =BuildMI(X86::ADDri32, 1, X86::ESP, MOTy::UseAndDef).addZImm(NumBytes);
MBBI = 1+MBB.insert(MBBI, MI);
}
}