Add support for inactive intervals. This effectively reuses registers

for live ranges that fall into assigned registers' holes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10566 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Alkis Evlogimenos 2003-12-21 05:43:40 +00:00
parent 1118d0fd94
commit 169cfd0196
5 changed files with 391 additions and 254 deletions

View File

@ -38,12 +38,10 @@ namespace llvm {
typedef std::pair<unsigned, unsigned> Range;
typedef std::vector<Range> Ranges;
unsigned reg; // the register of this interval
unsigned weight; // weight of this interval (number of uses)
Ranges ranges; // the ranges this register is valid
Interval(unsigned r)
: reg(r) {
}
Interval(unsigned r);
unsigned start() const {
assert(!ranges.empty() && "empty interval for register");
@ -59,6 +57,10 @@ namespace llvm {
return end() <= index;
}
bool liveAt(unsigned index) const;
bool overlaps(const Interval& other) const;
void addRange(unsigned start, unsigned end);
private:

View File

@ -38,12 +38,10 @@ namespace llvm {
typedef std::pair<unsigned, unsigned> Range;
typedef std::vector<Range> Ranges;
unsigned reg; // the register of this interval
unsigned weight; // weight of this interval (number of uses)
Ranges ranges; // the ranges this register is valid
Interval(unsigned r)
: reg(r) {
}
Interval(unsigned r);
unsigned start() const {
assert(!ranges.empty() && "empty interval for register");
@ -59,6 +57,10 @@ namespace llvm {
return end() <= index;
}
bool liveAt(unsigned index) const;
bool overlaps(const Interval& other) const;
void addRange(unsigned start, unsigned end);
private:

View File

@ -32,6 +32,7 @@
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include <limits>
#include <iostream>
using namespace llvm;
@ -278,13 +279,20 @@ void LiveIntervals::computeIntervals()
if (!mop.isRegister())
continue;
unsigned reg = mop.getAllocatedRegNum();
// handle defs - build intervals
if (mop.isDef()) {
unsigned reg = mop.getAllocatedRegNum();
if (reg < MRegisterInfo::FirstVirtualRegister)
handlePhysicalRegisterDef(mbb, mi, reg);
else
handleVirtualRegisterDef(mbb, mi, reg);
}
// update weights
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
if (r2iit != r2iMap_.end() &&
reg >= MRegisterInfo::FirstVirtualRegister)
++intervals_[r2iit->second].weight;
}
}
}
@ -294,6 +302,14 @@ void LiveIntervals::computeIntervals()
std::ostream_iterator<Interval>(std::cerr, "\n")));
}
LiveIntervals::Interval::Interval(unsigned r)
: reg(r),
weight((r < MRegisterInfo::FirstVirtualRegister ?
std::numeric_limits<unsigned>::max() : 0))
{
}
void LiveIntervals::Interval::addRange(unsigned start, unsigned end)
{
DEBUG(std::cerr << "\t\t\t\tadding range: [" << start <<','<< end << "]\n");
@ -330,10 +346,39 @@ void LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it)
}
}
bool LiveIntervals::Interval::liveAt(unsigned index) const
{
Ranges::const_iterator r = ranges.begin();
while (r != ranges.end() && index < r->second) {
if (index >= r->first)
return true;
++r;
}
return false;
}
bool LiveIntervals::Interval::overlaps(const Interval& other) const
{
std::vector<bool> bitMap(end(), false);
for (Ranges::const_iterator r = ranges.begin(); r != ranges.end(); ++r) {
for (unsigned i = r->first; i < r->second; ++i)
bitMap[i] = true;
}
for (Ranges::const_iterator r = other.ranges.begin();
r != other.ranges.end(); ++r) {
for (unsigned i = r->first;
i < r->second && i < bitMap.size(); ++i)
if (bitMap[i])
return true;
}
return false;
}
std::ostream& llvm::operator<<(std::ostream& os,
const LiveIntervals::Interval& li)
{
os << "%reg" << li.reg << " = ";
os << "%reg" << li.reg << ',' << li.weight << " = ";
for (LiveIntervals::Interval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
os << "[" << i->first << "," << i->second << "]";

View File

@ -38,12 +38,10 @@ namespace llvm {
typedef std::pair<unsigned, unsigned> Range;
typedef std::vector<Range> Ranges;
unsigned reg; // the register of this interval
unsigned weight; // weight of this interval (number of uses)
Ranges ranges; // the ranges this register is valid
Interval(unsigned r)
: reg(r) {
}
Interval(unsigned r);
unsigned start() const {
assert(!ranges.empty() && "empty interval for register");
@ -59,6 +57,10 @@ namespace llvm {
return end() <= index;
}
bool liveAt(unsigned index) const;
bool overlaps(const Interval& other) const;
void addRange(unsigned start, unsigned end);
private:

View File

@ -51,14 +51,14 @@ namespace {
Regs tempUseOperands_;
Regs tempDefOperands_;
Regs reserved_;
typedef std::vector<bool> RegMask;
RegMask reserved_;
unsigned regUse_[MRegisterInfo::FirstVirtualRegister];
typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
MachineBasicBlockPtrs mbbs_;
typedef std::vector<unsigned> Phys2VirtMap;
Phys2VirtMap p2vMap_;
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
@ -113,32 +113,23 @@ namespace {
/// use
void clearReservedPhysReg(unsigned reg);
/// getFreePhysReg - return a free physical register for this
/// virtual register interval if we have one, otherwise return
/// 0
unsigned getFreePhysReg(Intervals::const_iterator cur);
/// physRegAvailable - returns true if the specifed physical
/// register is available
bool physRegAvailable(unsigned physReg);
/// getFreePhysReg - return a free physical register for this
/// virtual register if we have one, otherwise return 0
unsigned getFreePhysReg(unsigned virtReg);
/// tempPhysRegAvailable - returns true if the specifed
/// temporary physical register is available
bool tempPhysRegAvailable(unsigned physReg);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this register class if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this virtual register if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(unsigned virtReg) {
const TargetRegisterClass* rc =
mf_->getSSARegMap()->getRegClass(virtReg);
return getFreeTempPhysReg(rc);
}
unsigned getFreeTempPhysReg(unsigned virtReg);
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
@ -165,6 +156,9 @@ namespace {
/// an assigned stack slot
void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
void markPhysRegFree(unsigned physReg);
void markPhysRegNotFree(unsigned physReg);
void printVirt2PhysMap() const {
std::cerr << "allocated registers:\n";
for (Virt2PhysMap::const_iterator
@ -189,6 +183,20 @@ namespace {
std::cerr << '\n';
}
}
void printFreeRegs(const char* const str,
const TargetRegisterClass* rc) const {
if (str) std::cerr << str << ':';
for (TargetRegisterClass::iterator i =
rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!regUse_[reg]) {
std::cerr << ' ' << mri_->getName(reg);
if (reserved_[reg]) std::cerr << "*";
}
}
std::cerr << '\n';
}
};
}
@ -199,11 +207,11 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
li_ = &getAnalysis<LiveIntervals>().getIntervals();
active_.clear();
inactive_.clear();
mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
p2vMap_.clear();
v2pMap_.clear();
v2ssMap_.clear();
memset(regUse_, 0, sizeof(regUse_));
DEBUG(
unsigned i = 0;
@ -232,14 +240,15 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
// R16: DI, BX,
// R8: BH, BL
// RFP: FP5, FP6
reserved_.push_back(19); /* EDI */
reserved_.push_back(17); /* EBX */
reserved_.push_back(12); /* DI */
reserved_.push_back( 7); /* BX */
reserved_.push_back( 4); /* BH */
reserved_.push_back( 5); /* BL */
reserved_.push_back(28); /* FP5 */
reserved_.push_back(29); /* FP6 */
reserved_.assign(MRegisterInfo::FirstVirtualRegister, false);
reserved_[19] = true; /* EDI */
reserved_[17] = true; /* EBX */
reserved_[12] = true; /* DI */
reserved_[ 7] = true; /* BX */
reserved_[ 4] = true; /* BH */
reserved_[ 5] = true; /* BL */
reserved_[28] = true; /* FP5 */
reserved_[29] = true; /* FP6 */
// liner scan algorithm
for (Intervals::const_iterator
@ -248,13 +257,19 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
assert(verifyIntervals());
for (MRegisterInfo::regclass_iterator c = mri_->regclass_begin();
c != mri_->regclass_end(); ++c) {
const TargetRegisterClass* rc = *c;
DEBUG(printFreeRegs("\tfree registers", rc));
}
//assert(verifyIntervals());
processActiveIntervals(i);
// processInactiveIntervals(i);
// if this register is preallocated, look for an interval that
// overlaps with it and assign it to a memory location
processInactiveIntervals(i);
DEBUG(std::cerr << "\tallocating current interval:\n");
// if this register is preallocated reserve it
if (i->reg < MRegisterInfo::FirstVirtualRegister) {
reservePhysReg(i->reg);
active_.push_back(&*i);
@ -263,7 +278,7 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
unsigned physReg = getFreePhysReg(i->reg);
unsigned physReg = getFreePhysReg(i);
if (!physReg) {
assignStackSlotAtInterval(i);
}
@ -278,12 +293,23 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
clearReservedPhysReg(reg);
markPhysRegFree(reg);
}
else {
p2vMap_[v2pMap_[reg]] = 0;
markPhysRegFree(v2pMap_[reg]);
}
}
// expire any remaining inactive intervals
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();
++i) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
markPhysRegFree(reg);
}
else {
markPhysRegFree(v2pMap_[reg]);
}
// remove interval from active
}
DEBUG(std::cerr << "finished register allocation\n");
@ -311,8 +337,6 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
if (op.isVirtualRegister()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
// if this virtual registers lives on the stack,
// load it to a temporary physical register
if (physReg) {
DEBUG(std::cerr << "\t\t\t%reg" << virtReg
<< " -> " << mri_->getName(physReg) << '\n');
@ -331,9 +355,9 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
loadVirt2PhysReg(virtReg, physReg);
tempUseOperands_.push_back(virtReg);
}
loadVirt2PhysReg(virtReg, physReg);
tempUseOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
@ -375,11 +399,6 @@ bool RA::runOnMachineFunction(MachineFunction &fn) {
--currentInstr_; // restore currentInstr_ iterator
tempDefOperands_.clear();
}
for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
assert(p2vMap_[i] != i &&
"reserved physical registers at end of basic block?");
}
}
return true;
@ -397,6 +416,16 @@ bool RA::verifyIntervals()
}
}
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();
++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
unsigned reg = v2pMap_.find((*i)->reg)->second;
bool inserted = assignedRegisters.insert(reg).second;
assert(inserted && "registers in inactive list conflict");
}
}
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
@ -409,8 +438,19 @@ bool RA::verifyIntervals()
}
}
// TODO: add checks between active and inactive and make sure we
// do not overlap anywhere
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();
++i) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_.find((*i)->reg)->second;
}
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) {
assert(assignedRegisters.find(*as) == assignedRegisters.end() &&
"registers in inactive list alias each other");
}
}
return true;
}
@ -426,23 +466,22 @@ void RA::processActiveIntervals(Intervals::const_iterator cur)
if ((*i)->expiredAt(cur->start() + 1)) {
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
clearReservedPhysReg(reg);
markPhysRegFree(reg);
}
else {
p2vMap_[v2pMap_[reg]] = 0;
markPhysRegFree(v2pMap_[reg]);
}
// remove interval from active
// remove from active
i = active_.erase(i);
}
// move inactive intervals to inactive list
else if (!(*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
// add to inactive
inactive_.push_back(*i);
// remove from active
i = active_.erase(i);
}
// move not active intervals to inactive list
// else if (!(*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
// unmarkReg(virtReg);
// // add interval to inactive
// inactive_.push_back(*i);
// // remove interval from active
// i = active_.erase(i);
// }
else {
++i;
}
@ -451,253 +490,280 @@ void RA::processActiveIntervals(Intervals::const_iterator cur)
void RA::processInactiveIntervals(Intervals::const_iterator cur)
{
// DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
// for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
// unsigned virtReg = (*i)->reg;
// // remove expired intervals
// if ((*i)->expired(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// freePhysReg(virtReg);
// // remove from inactive
// i = inactive_.erase(i);
// }
// // move re-activated intervals in active list
// else if ((*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
// markReg(virtReg);
// // add to active
// active_.push_back(*i);
// // remove from inactive
// i = inactive_.erase(i);
// }
// else {
// ++i;
// }
// }
DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals. we expire earlier because this if
// an interval expires this is going to be the last use. in
// this case we can reuse the register for a def in the same
// instruction
if ((*i)->expiredAt(cur->start() + 1)) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
markPhysRegFree(reg);
}
else {
markPhysRegFree(v2pMap_[reg]);
}
// remove from inactive
i = inactive_.erase(i);
}
// move re-activated intervals in active list
else if ((*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
// add to active
active_.push_back(*i);
// remove from inactive
i = inactive_.erase(i);
}
else {
++i;
}
}
}
namespace {
void updateWeight(unsigned rw[], unsigned reg, unsigned w)
{
if (rw[reg] == std::numeric_limits<unsigned>::max() ||
w == std::numeric_limits<unsigned>::max())
rw[reg] = std::numeric_limits<unsigned>::max();
else
rw[reg] += w;
}
}
void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\t\tassigning stack slot at interval "
<< *cur << ":\n");
assert(!active_.empty() &&
"active set cannot be empty when choosing a register to spill");
const TargetRegisterClass* rcCur =
mf_->getSSARegMap()->getRegClass(cur->reg);
assert((!active_.empty() || !inactive_.empty()) &&
"active and inactive sets cannot be both empty when choosing "
"a register to spill");
// find the interval for a virtual register that ends last in
// active and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndActive = active_.begin();
for (IntervalPtrs::iterator e = active_.end();
lastEndActive != e; ++lastEndActive) {
if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
if (rcCur == rc) {
break;
}
// set all weights to zero
unsigned regWeight[MRegisterInfo::FirstVirtualRegister];
memset(regWeight, 0, sizeof(regWeight));
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
// if (!cur->overlaps(**i))
// continue;
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndActive)->end() < (*i)->end()) {
lastEndActive = i;
}
for (IntervalPtrs::iterator i = inactive_.begin();
i != inactive_.end(); ++i) {
// if (!cur->overlaps(**i))
// continue;
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
unsigned minWeight = std::numeric_limits<unsigned>::max();
unsigned minReg = 0;
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!reserved_[reg] && minWeight > regWeight[reg]) {
minWeight = regWeight[reg];
minReg = reg;
}
}
// find the interval for a virtual register that ends last in
// inactive and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndInactive = inactive_.begin();
for (IntervalPtrs::iterator e = inactive_.end();
lastEndInactive != e; ++lastEndInactive) {
if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
if (rcCur == rc) {
break;
DEBUG(std::cerr << "\t\t\t\tspill candidate: "
<< mri_->getName(minReg) << '\n');
if (cur->weight < minWeight) {
assignVirt2StackSlot(cur->reg);
}
else {
std::set<unsigned> toSpill;
toSpill.insert(minReg);
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
toSpill.insert(*as);
for (IntervalPtrs::iterator i = active_.begin();
i != active_.end(); ) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister &&
toSpill.find(v2pMap_[reg]) != toSpill.end()) {
assignVirt2StackSlot(reg);
i = active_.erase(i);
}
else {
++i;
}
}
}
for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndInactive)->end() < (*i)->end()) {
lastEndInactive = i;
for (IntervalPtrs::iterator i = inactive_.begin();
i != inactive_.end(); ) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister &&
toSpill.find(v2pMap_[reg]) != toSpill.end()) {
assignVirt2StackSlot(reg);
i = inactive_.erase(i);
}
else {
++i;
}
}
}
unsigned lastEndActiveInactive = 0;
if (lastEndActive != active_.end() &&
lastEndActiveInactive < (*lastEndActive)->end()) {
lastEndActiveInactive = (*lastEndActive)->end();
}
if (lastEndInactive != inactive_.end() &&
lastEndActiveInactive < (*lastEndInactive)->end()) {
lastEndActiveInactive = (*lastEndInactive)->end();
}
if (lastEndActiveInactive > cur->end()) {
if (lastEndInactive == inactive_.end() ||
(*lastEndActive)->end() > (*lastEndInactive)->end()) {
assignVirt2StackSlot((*lastEndActive)->reg);
active_.erase(lastEndActive);
}
else {
assignVirt2StackSlot((*lastEndInactive)->reg);
inactive_.erase(lastEndInactive);
}
unsigned physReg = getFreePhysReg(cur->reg);
unsigned physReg = getFreePhysReg(cur);
assert(physReg && "no free physical register after spill?");
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(&*cur);
}
else {
assignVirt2StackSlot(cur->reg);
}
}
void RA::reservePhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\treserving physical register: "
<< mri_->getName(physReg) << '\n');
// if this register holds a value spill it
unsigned virtReg = p2vMap_[physReg];
if (virtReg != 0) {
assert(virtReg != physReg && "reserving an already reserved phus reg?");
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if ((*i)->reg == virtReg) {
active_.erase(i);
break;
}
}
assignVirt2StackSlot(virtReg);
}
p2vMap_[physReg] = physReg; // this denotes a reserved physical register
// if it also aliases any other registers with values spill them too
Regs clobbered;
clobbered.push_back(physReg);
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
unsigned virtReg = p2vMap_[*as];
if (virtReg != 0 && virtReg != *as) {
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if ((*i)->reg == virtReg) {
active_.erase(i);
break;
}
}
assignVirt2StackSlot(virtReg);
clobbered.push_back(*as);
}
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ) {
unsigned reg = (*i)->reg;
if (reg < MRegisterInfo::FirstVirtualRegister) {
++i;
continue;
}
if (find(clobbered.begin(), clobbered.end(), v2pMap_[reg]) !=
clobbered.end()) {
i = active_.erase(i);
assignVirt2StackSlot(reg);
}
else {
++i;
}
}
// or from inactive
for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
i != e; ) {
unsigned reg = (*i)->reg;
if (reg < MRegisterInfo::FirstVirtualRegister) {
++i;
continue;
}
if (find(clobbered.begin(), clobbered.end(), v2pMap_[reg]) !=
clobbered.end()) {
i = inactive_.erase(i);
assignVirt2StackSlot(reg);
}
else {
++i;
}
}
markPhysRegNotFree(physReg);
}
void RA::clearReservedPhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tclearing reserved physical register: "
<< mri_->getName(physReg) << '\n');
assert(p2vMap_[physReg] == physReg &&
"attempt to clear a non reserved physical register");
p2vMap_[physReg] = 0;
markPhysRegFree(physReg);
}
bool RA::physRegAvailable(unsigned physReg)
{
if (p2vMap_[physReg]) {
return false;
}
assert(!reserved_[physReg] &&
"cannot call this method with a reserved register");
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
return !regUse_[physReg];
}
unsigned RA::getFreePhysReg(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
// save the regUse counts because we are going to modify them
// specifically for this interval
unsigned regUseBackup[MRegisterInfo::FirstVirtualRegister];
memcpy(regUseBackup, regUse_, sizeof(regUseBackup));
// for every interval in inactive we don't overlap mark the
// register as free
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();
++i) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister)
reg = v2pMap_[reg];
if (!cur->overlaps(**i)) {
markPhysRegFree(reg);
}
}
// if it is one of the reserved registers it is still not free
if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
return false;
}
return true;
}
unsigned RA::getFreePhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
for (; reg != regEnd; ++reg) {
if (physRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!reserved_[reg] && !regUse_[reg]) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
memcpy(regUse_, regUseBackup, sizeof(regUseBackup));
return reg;
}
}
DEBUG(std::cerr << "no free register\n");
memcpy(regUse_, regUseBackup, sizeof(regUseBackup));
return 0;
}
bool RA::tempPhysRegAvailable(unsigned physReg)
{
assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
&& "cannot call this method with a non reserved temp register");
assert(reserved_[physReg] &&
"cannot call this method with a not reserved temp register");
if (p2vMap_[physReg]) {
return false;
}
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
}
}
return true;
return !regUse_[physReg];
}
unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
unsigned RA::getFreeTempPhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
for (Regs::const_iterator
reg = reserved_.begin(), regEnd = reserved_.end();
reg != regEnd; ++reg) {
if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
// go in reverse allocation order for the temp registers
for (TargetRegisterClass::iterator i = rc->allocation_order_end(*mf_) - 1;
i != rc->allocation_order_begin(*mf_) - 1; --i) {
unsigned reg = *i;
if (reserved_[reg] && !regUse_[reg]) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
assert(0 && "no free temporary physical register?");
return 0;
}
void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
assert((physRegAvailable(physReg) ||
find(reserved_.begin(),
reserved_.end(),
physReg) != reserved_.end()) &&
"attempt to allocate to a not available physical register");
v2pMap_[virtReg] = physReg;
p2vMap_[physReg] = virtReg;
markPhysRegNotFree(physReg);
}
void RA::clearVirtReg(unsigned virtReg)
@ -706,7 +772,7 @@ void RA::clearVirtReg(unsigned virtReg)
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
p2vMap_[physReg] = 0;
markPhysRegFree(physReg);
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
@ -766,6 +832,26 @@ void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
assignVirt2PhysReg(virtReg, physReg);
}
void RA::markPhysRegFree(unsigned physReg)
{
assert(regUse_[physReg] != 0);
--regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
assert(regUse_[physReg] != 0);
--regUse_[physReg];
}
}
void RA::markPhysRegNotFree(unsigned physReg)
{
++regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
++regUse_[physReg];
}
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}