mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 21:32:10 +00:00
Fix minor style issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99414 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
34b96f4fb3
commit
16e02097d2
@ -100,15 +100,15 @@ hexDigitValue(unsigned int c)
|
||||
unsigned int r;
|
||||
|
||||
r = c - '0';
|
||||
if(r <= 9)
|
||||
if (r <= 9)
|
||||
return r;
|
||||
|
||||
r = c - 'A';
|
||||
if(r <= 5)
|
||||
if (r <= 5)
|
||||
return r + 10;
|
||||
|
||||
r = c - 'a';
|
||||
if(r <= 5)
|
||||
if (r <= 5)
|
||||
return r + 10;
|
||||
|
||||
return -1U;
|
||||
@ -116,8 +116,8 @@ hexDigitValue(unsigned int c)
|
||||
|
||||
static inline void
|
||||
assertArithmeticOK(const llvm::fltSemantics &semantics) {
|
||||
assert(semantics.arithmeticOK
|
||||
&& "Compile-time arithmetic does not support these semantics");
|
||||
assert(semantics.arithmeticOK &&
|
||||
"Compile-time arithmetic does not support these semantics");
|
||||
}
|
||||
|
||||
/* Return the value of a decimal exponent of the form
|
||||
@ -179,37 +179,37 @@ totalExponent(StringRef::iterator p, StringRef::iterator end,
|
||||
assert(p != end && "Exponent has no digits");
|
||||
|
||||
negative = *p == '-';
|
||||
if(*p == '-' || *p == '+') {
|
||||
if (*p == '-' || *p == '+') {
|
||||
p++;
|
||||
assert(p != end && "Exponent has no digits");
|
||||
}
|
||||
|
||||
unsignedExponent = 0;
|
||||
overflow = false;
|
||||
for(; p != end; ++p) {
|
||||
for (; p != end; ++p) {
|
||||
unsigned int value;
|
||||
|
||||
value = decDigitValue(*p);
|
||||
assert(value < 10U && "Invalid character in exponent");
|
||||
|
||||
unsignedExponent = unsignedExponent * 10 + value;
|
||||
if(unsignedExponent > 65535)
|
||||
if (unsignedExponent > 65535)
|
||||
overflow = true;
|
||||
}
|
||||
|
||||
if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
|
||||
if (exponentAdjustment > 65535 || exponentAdjustment < -65536)
|
||||
overflow = true;
|
||||
|
||||
if(!overflow) {
|
||||
if (!overflow) {
|
||||
exponent = unsignedExponent;
|
||||
if(negative)
|
||||
if (negative)
|
||||
exponent = -exponent;
|
||||
exponent += exponentAdjustment;
|
||||
if(exponent > 65535 || exponent < -65536)
|
||||
if (exponent > 65535 || exponent < -65536)
|
||||
overflow = true;
|
||||
}
|
||||
|
||||
if(overflow)
|
||||
if (overflow)
|
||||
exponent = negative ? -65536: 65535;
|
||||
|
||||
return exponent;
|
||||
@ -221,15 +221,15 @@ skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
|
||||
{
|
||||
StringRef::iterator p = begin;
|
||||
*dot = end;
|
||||
while(*p == '0' && p != end)
|
||||
while (*p == '0' && p != end)
|
||||
p++;
|
||||
|
||||
if(*p == '.') {
|
||||
if (*p == '.') {
|
||||
*dot = p++;
|
||||
|
||||
assert(end - begin != 1 && "Significand has no digits");
|
||||
|
||||
while(*p == '0' && p != end)
|
||||
while (*p == '0' && p != end)
|
||||
p++;
|
||||
}
|
||||
|
||||
@ -323,13 +323,13 @@ trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
|
||||
|
||||
/* If the first trailing digit isn't 0 or 8 we can work out the
|
||||
fraction immediately. */
|
||||
if(digitValue > 8)
|
||||
if (digitValue > 8)
|
||||
return lfMoreThanHalf;
|
||||
else if(digitValue < 8 && digitValue > 0)
|
||||
else if (digitValue < 8 && digitValue > 0)
|
||||
return lfLessThanHalf;
|
||||
|
||||
/* Otherwise we need to find the first non-zero digit. */
|
||||
while(*p == '0')
|
||||
while (*p == '0')
|
||||
p++;
|
||||
|
||||
assert(p != end && "Invalid trailing hexadecimal fraction!");
|
||||
@ -338,7 +338,7 @@ trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
|
||||
|
||||
/* If we ran off the end it is exactly zero or one-half, otherwise
|
||||
a little more. */
|
||||
if(hexDigit == -1U)
|
||||
if (hexDigit == -1U)
|
||||
return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
|
||||
else
|
||||
return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
|
||||
@ -356,12 +356,12 @@ lostFractionThroughTruncation(const integerPart *parts,
|
||||
lsb = APInt::tcLSB(parts, partCount);
|
||||
|
||||
/* Note this is guaranteed true if bits == 0, or LSB == -1U. */
|
||||
if(bits <= lsb)
|
||||
if (bits <= lsb)
|
||||
return lfExactlyZero;
|
||||
if(bits == lsb + 1)
|
||||
if (bits == lsb + 1)
|
||||
return lfExactlyHalf;
|
||||
if(bits <= partCount * integerPartWidth
|
||||
&& APInt::tcExtractBit(parts, bits - 1))
|
||||
if (bits <= partCount * integerPartWidth &&
|
||||
APInt::tcExtractBit(parts, bits - 1))
|
||||
return lfMoreThanHalf;
|
||||
|
||||
return lfLessThanHalf;
|
||||
@ -385,10 +385,10 @@ static lostFraction
|
||||
combineLostFractions(lostFraction moreSignificant,
|
||||
lostFraction lessSignificant)
|
||||
{
|
||||
if(lessSignificant != lfExactlyZero) {
|
||||
if(moreSignificant == lfExactlyZero)
|
||||
if (lessSignificant != lfExactlyZero) {
|
||||
if (moreSignificant == lfExactlyZero)
|
||||
moreSignificant = lfLessThanHalf;
|
||||
else if(moreSignificant == lfExactlyHalf)
|
||||
else if (moreSignificant == lfExactlyHalf)
|
||||
moreSignificant = lfMoreThanHalf;
|
||||
}
|
||||
|
||||
@ -588,14 +588,14 @@ APFloat::initialize(const fltSemantics *ourSemantics)
|
||||
|
||||
semantics = ourSemantics;
|
||||
count = partCount();
|
||||
if(count > 1)
|
||||
if (count > 1)
|
||||
significand.parts = new integerPart[count];
|
||||
}
|
||||
|
||||
void
|
||||
APFloat::freeSignificand()
|
||||
{
|
||||
if(partCount() > 1)
|
||||
if (partCount() > 1)
|
||||
delete [] significand.parts;
|
||||
}
|
||||
|
||||
@ -609,7 +609,7 @@ APFloat::assign(const APFloat &rhs)
|
||||
exponent = rhs.exponent;
|
||||
sign2 = rhs.sign2;
|
||||
exponent2 = rhs.exponent2;
|
||||
if(category == fcNormal || category == fcNaN)
|
||||
if (category == fcNormal || category == fcNaN)
|
||||
copySignificand(rhs);
|
||||
}
|
||||
|
||||
@ -683,8 +683,8 @@ APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
|
||||
APFloat &
|
||||
APFloat::operator=(const APFloat &rhs)
|
||||
{
|
||||
if(this != &rhs) {
|
||||
if(semantics != rhs.semantics) {
|
||||
if (this != &rhs) {
|
||||
if (semantics != rhs.semantics) {
|
||||
freeSignificand();
|
||||
initialize(rhs.semantics);
|
||||
}
|
||||
@ -881,7 +881,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
precision = semantics->precision;
|
||||
newPartsCount = partCountForBits(precision * 2);
|
||||
|
||||
if(newPartsCount > 4)
|
||||
if (newPartsCount > 4)
|
||||
fullSignificand = new integerPart[newPartsCount];
|
||||
else
|
||||
fullSignificand = scratch;
|
||||
@ -896,7 +896,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
|
||||
exponent += rhs.exponent;
|
||||
|
||||
if(addend) {
|
||||
if (addend) {
|
||||
Significand savedSignificand = significand;
|
||||
const fltSemantics *savedSemantics = semantics;
|
||||
fltSemantics extendedSemantics;
|
||||
@ -905,18 +905,17 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
|
||||
/* Normalize our MSB. */
|
||||
extendedPrecision = precision + precision - 1;
|
||||
if(omsb != extendedPrecision)
|
||||
{
|
||||
APInt::tcShiftLeft(fullSignificand, newPartsCount,
|
||||
extendedPrecision - omsb);
|
||||
exponent -= extendedPrecision - omsb;
|
||||
}
|
||||
if (omsb != extendedPrecision) {
|
||||
APInt::tcShiftLeft(fullSignificand, newPartsCount,
|
||||
extendedPrecision - omsb);
|
||||
exponent -= extendedPrecision - omsb;
|
||||
}
|
||||
|
||||
/* Create new semantics. */
|
||||
extendedSemantics = *semantics;
|
||||
extendedSemantics.precision = extendedPrecision;
|
||||
|
||||
if(newPartsCount == 1)
|
||||
if (newPartsCount == 1)
|
||||
significand.part = fullSignificand[0];
|
||||
else
|
||||
significand.parts = fullSignificand;
|
||||
@ -928,7 +927,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
lost_fraction = addOrSubtractSignificand(extendedAddend, false);
|
||||
|
||||
/* Restore our state. */
|
||||
if(newPartsCount == 1)
|
||||
if (newPartsCount == 1)
|
||||
fullSignificand[0] = significand.part;
|
||||
significand = savedSignificand;
|
||||
semantics = savedSemantics;
|
||||
@ -938,7 +937,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
|
||||
exponent -= (precision - 1);
|
||||
|
||||
if(omsb > precision) {
|
||||
if (omsb > precision) {
|
||||
unsigned int bits, significantParts;
|
||||
lostFraction lf;
|
||||
|
||||
@ -951,7 +950,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
|
||||
|
||||
APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
|
||||
|
||||
if(newPartsCount > 4)
|
||||
if (newPartsCount > 4)
|
||||
delete [] fullSignificand;
|
||||
|
||||
return lost_fraction;
|
||||
@ -973,7 +972,7 @@ APFloat::divideSignificand(const APFloat &rhs)
|
||||
rhsSignificand = rhs.significandParts();
|
||||
partsCount = partCount();
|
||||
|
||||
if(partsCount > 2)
|
||||
if (partsCount > 2)
|
||||
dividend = new integerPart[partsCount * 2];
|
||||
else
|
||||
dividend = scratch;
|
||||
@ -981,7 +980,7 @@ APFloat::divideSignificand(const APFloat &rhs)
|
||||
divisor = dividend + partsCount;
|
||||
|
||||
/* Copy the dividend and divisor as they will be modified in-place. */
|
||||
for(i = 0; i < partsCount; i++) {
|
||||
for (i = 0; i < partsCount; i++) {
|
||||
dividend[i] = lhsSignificand[i];
|
||||
divisor[i] = rhsSignificand[i];
|
||||
lhsSignificand[i] = 0;
|
||||
@ -993,14 +992,14 @@ APFloat::divideSignificand(const APFloat &rhs)
|
||||
|
||||
/* Normalize the divisor. */
|
||||
bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
|
||||
if(bit) {
|
||||
if (bit) {
|
||||
exponent += bit;
|
||||
APInt::tcShiftLeft(divisor, partsCount, bit);
|
||||
}
|
||||
|
||||
/* Normalize the dividend. */
|
||||
bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
|
||||
if(bit) {
|
||||
if (bit) {
|
||||
exponent -= bit;
|
||||
APInt::tcShiftLeft(dividend, partsCount, bit);
|
||||
}
|
||||
@ -1008,15 +1007,15 @@ APFloat::divideSignificand(const APFloat &rhs)
|
||||
/* Ensure the dividend >= divisor initially for the loop below.
|
||||
Incidentally, this means that the division loop below is
|
||||
guaranteed to set the integer bit to one. */
|
||||
if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
|
||||
if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
|
||||
exponent--;
|
||||
APInt::tcShiftLeft(dividend, partsCount, 1);
|
||||
assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
|
||||
}
|
||||
|
||||
/* Long division. */
|
||||
for(bit = precision; bit; bit -= 1) {
|
||||
if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
|
||||
for (bit = precision; bit; bit -= 1) {
|
||||
if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
|
||||
APInt::tcSubtract(dividend, divisor, 0, partsCount);
|
||||
APInt::tcSetBit(lhsSignificand, bit - 1);
|
||||
}
|
||||
@ -1027,16 +1026,16 @@ APFloat::divideSignificand(const APFloat &rhs)
|
||||
/* Figure out the lost fraction. */
|
||||
int cmp = APInt::tcCompare(dividend, divisor, partsCount);
|
||||
|
||||
if(cmp > 0)
|
||||
if (cmp > 0)
|
||||
lost_fraction = lfMoreThanHalf;
|
||||
else if(cmp == 0)
|
||||
else if (cmp == 0)
|
||||
lost_fraction = lfExactlyHalf;
|
||||
else if(APInt::tcIsZero(dividend, partsCount))
|
||||
else if (APInt::tcIsZero(dividend, partsCount))
|
||||
lost_fraction = lfExactlyZero;
|
||||
else
|
||||
lost_fraction = lfLessThanHalf;
|
||||
|
||||
if(partsCount > 2)
|
||||
if (partsCount > 2)
|
||||
delete [] dividend;
|
||||
|
||||
return lost_fraction;
|
||||
@ -1072,7 +1071,7 @@ APFloat::shiftSignificandLeft(unsigned int bits)
|
||||
{
|
||||
assert(bits < semantics->precision);
|
||||
|
||||
if(bits) {
|
||||
if (bits) {
|
||||
unsigned int partsCount = partCount();
|
||||
|
||||
APInt::tcShiftLeft(significandParts(), partsCount, bits);
|
||||
@ -1095,13 +1094,13 @@ APFloat::compareAbsoluteValue(const APFloat &rhs) const
|
||||
|
||||
/* If exponents are equal, do an unsigned bignum comparison of the
|
||||
significands. */
|
||||
if(compare == 0)
|
||||
if (compare == 0)
|
||||
compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
|
||||
partCount());
|
||||
|
||||
if(compare > 0)
|
||||
if (compare > 0)
|
||||
return cmpGreaterThan;
|
||||
else if(compare < 0)
|
||||
else if (compare < 0)
|
||||
return cmpLessThan;
|
||||
else
|
||||
return cmpEqual;
|
||||
@ -1113,14 +1112,13 @@ APFloat::opStatus
|
||||
APFloat::handleOverflow(roundingMode rounding_mode)
|
||||
{
|
||||
/* Infinity? */
|
||||
if(rounding_mode == rmNearestTiesToEven
|
||||
|| rounding_mode == rmNearestTiesToAway
|
||||
|| (rounding_mode == rmTowardPositive && !sign)
|
||||
|| (rounding_mode == rmTowardNegative && sign))
|
||||
{
|
||||
category = fcInfinity;
|
||||
return (opStatus) (opOverflow | opInexact);
|
||||
}
|
||||
if (rounding_mode == rmNearestTiesToEven ||
|
||||
rounding_mode == rmNearestTiesToAway ||
|
||||
(rounding_mode == rmTowardPositive && !sign) ||
|
||||
(rounding_mode == rmTowardNegative && sign)) {
|
||||
category = fcInfinity;
|
||||
return (opStatus) (opOverflow | opInexact);
|
||||
}
|
||||
|
||||
/* Otherwise we become the largest finite number. */
|
||||
category = fcNormal;
|
||||
@ -1155,11 +1153,11 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode,
|
||||
return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
|
||||
|
||||
case rmNearestTiesToEven:
|
||||
if(lost_fraction == lfMoreThanHalf)
|
||||
if (lost_fraction == lfMoreThanHalf)
|
||||
return true;
|
||||
|
||||
/* Our zeroes don't have a significand to test. */
|
||||
if(lost_fraction == lfExactlyHalf && category != fcZero)
|
||||
if (lost_fraction == lfExactlyHalf && category != fcZero)
|
||||
return APInt::tcExtractBit(significandParts(), bit);
|
||||
|
||||
return false;
|
||||
@ -1182,13 +1180,13 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
unsigned int omsb; /* One, not zero, based MSB. */
|
||||
int exponentChange;
|
||||
|
||||
if(category != fcNormal)
|
||||
if (category != fcNormal)
|
||||
return opOK;
|
||||
|
||||
/* Before rounding normalize the exponent of fcNormal numbers. */
|
||||
omsb = significandMSB() + 1;
|
||||
|
||||
if(omsb) {
|
||||
if (omsb) {
|
||||
/* OMSB is numbered from 1. We want to place it in the integer
|
||||
bit numbered PRECISON if possible, with a compensating change in
|
||||
the exponent. */
|
||||
@ -1196,16 +1194,16 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
|
||||
/* If the resulting exponent is too high, overflow according to
|
||||
the rounding mode. */
|
||||
if(exponent + exponentChange > semantics->maxExponent)
|
||||
if (exponent + exponentChange > semantics->maxExponent)
|
||||
return handleOverflow(rounding_mode);
|
||||
|
||||
/* Subnormal numbers have exponent minExponent, and their MSB
|
||||
is forced based on that. */
|
||||
if(exponent + exponentChange < semantics->minExponent)
|
||||
if (exponent + exponentChange < semantics->minExponent)
|
||||
exponentChange = semantics->minExponent - exponent;
|
||||
|
||||
/* Shifting left is easy as we don't lose precision. */
|
||||
if(exponentChange < 0) {
|
||||
if (exponentChange < 0) {
|
||||
assert(lost_fraction == lfExactlyZero);
|
||||
|
||||
shiftSignificandLeft(-exponentChange);
|
||||
@ -1213,7 +1211,7 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
return opOK;
|
||||
}
|
||||
|
||||
if(exponentChange > 0) {
|
||||
if (exponentChange > 0) {
|
||||
lostFraction lf;
|
||||
|
||||
/* Shift right and capture any new lost fraction. */
|
||||
@ -1222,7 +1220,7 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
lost_fraction = combineLostFractions(lf, lost_fraction);
|
||||
|
||||
/* Keep OMSB up-to-date. */
|
||||
if(omsb > (unsigned) exponentChange)
|
||||
if (omsb > (unsigned) exponentChange)
|
||||
omsb -= exponentChange;
|
||||
else
|
||||
omsb = 0;
|
||||
@ -1234,28 +1232,28 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
|
||||
/* As specified in IEEE 754, since we do not trap we do not report
|
||||
underflow for exact results. */
|
||||
if(lost_fraction == lfExactlyZero) {
|
||||
if (lost_fraction == lfExactlyZero) {
|
||||
/* Canonicalize zeroes. */
|
||||
if(omsb == 0)
|
||||
if (omsb == 0)
|
||||
category = fcZero;
|
||||
|
||||
return opOK;
|
||||
}
|
||||
|
||||
/* Increment the significand if we're rounding away from zero. */
|
||||
if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
|
||||
if(omsb == 0)
|
||||
if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
|
||||
if (omsb == 0)
|
||||
exponent = semantics->minExponent;
|
||||
|
||||
incrementSignificand();
|
||||
omsb = significandMSB() + 1;
|
||||
|
||||
/* Did the significand increment overflow? */
|
||||
if(omsb == (unsigned) semantics->precision + 1) {
|
||||
if (omsb == (unsigned) semantics->precision + 1) {
|
||||
/* Renormalize by incrementing the exponent and shifting our
|
||||
significand right one. However if we already have the
|
||||
maximum exponent we overflow to infinity. */
|
||||
if(exponent == semantics->maxExponent) {
|
||||
if (exponent == semantics->maxExponent) {
|
||||
category = fcInfinity;
|
||||
|
||||
return (opStatus) (opOverflow | opInexact);
|
||||
@ -1269,14 +1267,14 @@ APFloat::normalize(roundingMode rounding_mode,
|
||||
|
||||
/* The normal case - we were and are not denormal, and any
|
||||
significand increment above didn't overflow. */
|
||||
if(omsb == semantics->precision)
|
||||
if (omsb == semantics->precision)
|
||||
return opInexact;
|
||||
|
||||
/* We have a non-zero denormal. */
|
||||
assert(omsb < semantics->precision);
|
||||
|
||||
/* Canonicalize zeroes. */
|
||||
if(omsb == 0)
|
||||
if (omsb == 0)
|
||||
category = fcZero;
|
||||
|
||||
/* The fcZero case is a denormal that underflowed to zero. */
|
||||
@ -1324,7 +1322,7 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
|
||||
case convolve(fcInfinity, fcInfinity):
|
||||
/* Differently signed infinities can only be validly
|
||||
subtracted. */
|
||||
if(((sign ^ rhs.sign)!=0) != subtract) {
|
||||
if (((sign ^ rhs.sign)!=0) != subtract) {
|
||||
makeNaN();
|
||||
return opInvalidOp;
|
||||
}
|
||||
@ -1352,7 +1350,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
|
||||
bits = exponent - rhs.exponent;
|
||||
|
||||
/* Subtraction is more subtle than one might naively expect. */
|
||||
if(subtract) {
|
||||
if (subtract) {
|
||||
APFloat temp_rhs(rhs);
|
||||
bool reverse;
|
||||
|
||||
@ -1381,16 +1379,16 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
|
||||
|
||||
/* Invert the lost fraction - it was on the RHS and
|
||||
subtracted. */
|
||||
if(lost_fraction == lfLessThanHalf)
|
||||
if (lost_fraction == lfLessThanHalf)
|
||||
lost_fraction = lfMoreThanHalf;
|
||||
else if(lost_fraction == lfMoreThanHalf)
|
||||
else if (lost_fraction == lfMoreThanHalf)
|
||||
lost_fraction = lfLessThanHalf;
|
||||
|
||||
/* The code above is intended to ensure that no borrow is
|
||||
necessary. */
|
||||
assert(!carry);
|
||||
} else {
|
||||
if(bits > 0) {
|
||||
if (bits > 0) {
|
||||
APFloat temp_rhs(rhs);
|
||||
|
||||
lost_fraction = temp_rhs.shiftSignificandRight(bits);
|
||||
@ -1561,7 +1559,7 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
|
||||
fs = addOrSubtractSpecials(rhs, subtract);
|
||||
|
||||
/* This return code means it was not a simple case. */
|
||||
if(fs == opDivByZero) {
|
||||
if (fs == opDivByZero) {
|
||||
lostFraction lost_fraction;
|
||||
|
||||
lost_fraction = addOrSubtractSignificand(rhs, subtract);
|
||||
@ -1574,8 +1572,8 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
|
||||
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
|
||||
positive zero unless rounding to minus infinity, except that
|
||||
adding two like-signed zeroes gives that zero. */
|
||||
if(category == fcZero) {
|
||||
if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
|
||||
if (category == fcZero) {
|
||||
if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
|
||||
sign = (rounding_mode == rmTowardNegative);
|
||||
}
|
||||
|
||||
@ -1606,10 +1604,10 @@ APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
|
||||
sign ^= rhs.sign;
|
||||
fs = multiplySpecials(rhs);
|
||||
|
||||
if(category == fcNormal) {
|
||||
if (category == fcNormal) {
|
||||
lostFraction lost_fraction = multiplySignificand(rhs, 0);
|
||||
fs = normalize(rounding_mode, lost_fraction);
|
||||
if(lost_fraction != lfExactlyZero)
|
||||
if (lost_fraction != lfExactlyZero)
|
||||
fs = (opStatus) (fs | opInexact);
|
||||
}
|
||||
|
||||
@ -1626,10 +1624,10 @@ APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
|
||||
sign ^= rhs.sign;
|
||||
fs = divideSpecials(rhs);
|
||||
|
||||
if(category == fcNormal) {
|
||||
if (category == fcNormal) {
|
||||
lostFraction lost_fraction = divideSignificand(rhs);
|
||||
fs = normalize(rounding_mode, lost_fraction);
|
||||
if(lost_fraction != lfExactlyZero)
|
||||
if (lost_fraction != lfExactlyZero)
|
||||
fs = (opStatus) (fs | opInexact);
|
||||
}
|
||||
|
||||
@ -1730,20 +1728,20 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
|
||||
|
||||
/* If and only if all arguments are normal do we need to do an
|
||||
extended-precision calculation. */
|
||||
if(category == fcNormal
|
||||
&& multiplicand.category == fcNormal
|
||||
&& addend.category == fcNormal) {
|
||||
if (category == fcNormal &&
|
||||
multiplicand.category == fcNormal &&
|
||||
addend.category == fcNormal) {
|
||||
lostFraction lost_fraction;
|
||||
|
||||
lost_fraction = multiplySignificand(multiplicand, &addend);
|
||||
fs = normalize(rounding_mode, lost_fraction);
|
||||
if(lost_fraction != lfExactlyZero)
|
||||
if (lost_fraction != lfExactlyZero)
|
||||
fs = (opStatus) (fs | opInexact);
|
||||
|
||||
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
|
||||
positive zero unless rounding to minus infinity, except that
|
||||
adding two like-signed zeroes gives that zero. */
|
||||
if(category == fcZero && sign != addend.sign)
|
||||
if (category == fcZero && sign != addend.sign)
|
||||
sign = (rounding_mode == rmTowardNegative);
|
||||
} else {
|
||||
fs = multiplySpecials(multiplicand);
|
||||
@ -1755,7 +1753,7 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
|
||||
|
||||
If we need to do the addition we can do so with normal
|
||||
precision. */
|
||||
if(fs == opOK)
|
||||
if (fs == opOK)
|
||||
fs = addOrSubtract(addend, rounding_mode, false);
|
||||
}
|
||||
|
||||
@ -1787,7 +1785,7 @@ APFloat::compare(const APFloat &rhs) const
|
||||
case convolve(fcInfinity, fcNormal):
|
||||
case convolve(fcInfinity, fcZero):
|
||||
case convolve(fcNormal, fcZero):
|
||||
if(sign)
|
||||
if (sign)
|
||||
return cmpLessThan;
|
||||
else
|
||||
return cmpGreaterThan;
|
||||
@ -1795,15 +1793,15 @@ APFloat::compare(const APFloat &rhs) const
|
||||
case convolve(fcNormal, fcInfinity):
|
||||
case convolve(fcZero, fcInfinity):
|
||||
case convolve(fcZero, fcNormal):
|
||||
if(rhs.sign)
|
||||
if (rhs.sign)
|
||||
return cmpGreaterThan;
|
||||
else
|
||||
return cmpLessThan;
|
||||
|
||||
case convolve(fcInfinity, fcInfinity):
|
||||
if(sign == rhs.sign)
|
||||
if (sign == rhs.sign)
|
||||
return cmpEqual;
|
||||
else if(sign)
|
||||
else if (sign)
|
||||
return cmpLessThan;
|
||||
else
|
||||
return cmpGreaterThan;
|
||||
@ -1816,8 +1814,8 @@ APFloat::compare(const APFloat &rhs) const
|
||||
}
|
||||
|
||||
/* Two normal numbers. Do they have the same sign? */
|
||||
if(sign != rhs.sign) {
|
||||
if(sign)
|
||||
if (sign != rhs.sign) {
|
||||
if (sign)
|
||||
result = cmpLessThan;
|
||||
else
|
||||
result = cmpGreaterThan;
|
||||
@ -1825,10 +1823,10 @@ APFloat::compare(const APFloat &rhs) const
|
||||
/* Compare absolute values; invert result if negative. */
|
||||
result = compareAbsoluteValue(rhs);
|
||||
|
||||
if(sign) {
|
||||
if(result == cmpLessThan)
|
||||
if (sign) {
|
||||
if (result == cmpLessThan)
|
||||
result = cmpGreaterThan;
|
||||
else if(result == cmpGreaterThan)
|
||||
else if (result == cmpGreaterThan)
|
||||
result = cmpLessThan;
|
||||
}
|
||||
}
|
||||
@ -1886,7 +1884,7 @@ APFloat::convert(const fltSemantics &toSemantics,
|
||||
}
|
||||
}
|
||||
|
||||
if(category == fcNormal) {
|
||||
if (category == fcNormal) {
|
||||
/* Re-interpret our bit-pattern. */
|
||||
exponent += toSemantics.precision - semantics->precision;
|
||||
semantics = &toSemantics;
|
||||
@ -1956,12 +1954,12 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
|
||||
*isExact = false;
|
||||
|
||||
/* Handle the three special cases first. */
|
||||
if(category == fcInfinity || category == fcNaN)
|
||||
if (category == fcInfinity || category == fcNaN)
|
||||
return opInvalidOp;
|
||||
|
||||
dstPartsCount = partCountForBits(width);
|
||||
|
||||
if(category == fcZero) {
|
||||
if (category == fcZero) {
|
||||
APInt::tcSet(parts, 0, dstPartsCount);
|
||||
// Negative zero can't be represented as an int.
|
||||
*isExact = !sign;
|
||||
@ -2004,8 +2002,8 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
|
||||
if (truncatedBits) {
|
||||
lost_fraction = lostFractionThroughTruncation(src, partCount(),
|
||||
truncatedBits);
|
||||
if (lost_fraction != lfExactlyZero
|
||||
&& roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
|
||||
if (lost_fraction != lfExactlyZero &&
|
||||
roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
|
||||
if (APInt::tcIncrement(parts, dstPartsCount))
|
||||
return opInvalidOp; /* Overflow. */
|
||||
}
|
||||
@ -2149,8 +2147,8 @@ APFloat::convertFromSignExtendedInteger(const integerPart *src,
|
||||
opStatus status;
|
||||
|
||||
assertArithmeticOK(*semantics);
|
||||
if (isSigned
|
||||
&& APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
|
||||
if (isSigned &&
|
||||
APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
|
||||
integerPart *copy;
|
||||
|
||||
/* If we're signed and negative negate a copy. */
|
||||
@ -2178,7 +2176,7 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
|
||||
APInt api = APInt(width, partCount, parts);
|
||||
|
||||
sign = false;
|
||||
if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
|
||||
if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
|
||||
sign = true;
|
||||
api = -api;
|
||||
}
|
||||
@ -2209,10 +2207,10 @@ APFloat::convertFromHexadecimalString(const StringRef &s,
|
||||
StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
|
||||
firstSignificantDigit = p;
|
||||
|
||||
for(; p != end;) {
|
||||
for (; p != end;) {
|
||||
integerPart hex_value;
|
||||
|
||||
if(*p == '.') {
|
||||
if (*p == '.') {
|
||||
assert(dot == end && "String contains multiple dots");
|
||||
dot = p++;
|
||||
if (p == end) {
|
||||
@ -2221,7 +2219,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s,
|
||||
}
|
||||
|
||||
hex_value = hexDigitValue(*p);
|
||||
if(hex_value == -1U) {
|
||||
if (hex_value == -1U) {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2231,13 +2229,13 @@ APFloat::convertFromHexadecimalString(const StringRef &s,
|
||||
break;
|
||||
} else {
|
||||
/* Store the number whilst 4-bit nibbles remain. */
|
||||
if(bitPos) {
|
||||
if (bitPos) {
|
||||
bitPos -= 4;
|
||||
hex_value <<= bitPos % integerPartWidth;
|
||||
significand[bitPos / integerPartWidth] |= hex_value;
|
||||
} else {
|
||||
lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
|
||||
while(p != end && hexDigitValue(*p) != -1U)
|
||||
while (p != end && hexDigitValue(*p) != -1U)
|
||||
p++;
|
||||
break;
|
||||
}
|
||||
@ -2251,7 +2249,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s,
|
||||
assert((dot == end || p - begin != 1) && "Significand has no digits");
|
||||
|
||||
/* Ignore the exponent if we are zero. */
|
||||
if(p != firstSignificantDigit) {
|
||||
if (p != firstSignificantDigit) {
|
||||
int expAdjustment;
|
||||
|
||||
/* Implicit hexadecimal point? */
|
||||
@ -2261,7 +2259,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s,
|
||||
/* Calculate the exponent adjustment implicit in the number of
|
||||
significant digits. */
|
||||
expAdjustment = static_cast<int>(dot - firstSignificantDigit);
|
||||
if(expAdjustment < 0)
|
||||
if (expAdjustment < 0)
|
||||
expAdjustment++;
|
||||
expAdjustment = expAdjustment * 4 - 1;
|
||||
|
||||
@ -2287,8 +2285,8 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
|
||||
integerPart pow5Parts[maxPowerOfFiveParts];
|
||||
bool isNearest;
|
||||
|
||||
isNearest = (rounding_mode == rmNearestTiesToEven
|
||||
|| rounding_mode == rmNearestTiesToAway);
|
||||
isNearest = (rounding_mode == rmNearestTiesToEven ||
|
||||
rounding_mode == rmNearestTiesToAway);
|
||||
|
||||
parts = partCountForBits(semantics->precision + 11);
|
||||
|
||||
@ -2482,13 +2480,13 @@ APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode)
|
||||
StringRef::iterator p = str.begin();
|
||||
size_t slen = str.size();
|
||||
sign = *p == '-' ? 1 : 0;
|
||||
if(*p == '-' || *p == '+') {
|
||||
if (*p == '-' || *p == '+') {
|
||||
p++;
|
||||
slen--;
|
||||
assert(slen && "String has no digits");
|
||||
}
|
||||
|
||||
if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
|
||||
if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
|
||||
assert(slen - 2 && "Invalid string");
|
||||
return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
|
||||
rounding_mode);
|
||||
@ -3217,8 +3215,8 @@ APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
|
||||
significand[i] = ~((integerPart) 0);
|
||||
|
||||
// ...and then clear the top bits for internal consistency.
|
||||
significand[N-1]
|
||||
&= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
|
||||
significand[N-1] &=
|
||||
(((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
|
||||
|
||||
return Val;
|
||||
}
|
||||
@ -3247,8 +3245,8 @@ APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
|
||||
|
||||
Val.exponent = Sem.minExponent;
|
||||
Val.zeroSignificand();
|
||||
Val.significandParts()[partCountForBits(Sem.precision)-1]
|
||||
|= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
|
||||
Val.significandParts()[partCountForBits(Sem.precision)-1] |=
|
||||
(((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
|
||||
|
||||
return Val;
|
||||
}
|
||||
|
@ -702,15 +702,14 @@ static inline uint32_t hashword(const uint64_t *k64, size_t length)
|
||||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
|
||||
|
||||
/*------------------------------------------------- handle most of the key */
|
||||
while (length > 3)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
while (length > 3) {
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*------------------------------------------- handle the last 3 uint32_t's */
|
||||
switch (length) { /* all the case statements fall through */
|
||||
@ -2065,8 +2064,8 @@ void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
|
||||
assert((slen <= numbits || radix != 2) && "Insufficient bit width");
|
||||
assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
|
||||
assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
|
||||
assert((((slen-1)*64)/22 <= numbits || radix != 10)
|
||||
&& "Insufficient bit width");
|
||||
assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
|
||||
"Insufficient bit width");
|
||||
|
||||
// Allocate memory
|
||||
if (!isSingleWord())
|
||||
@ -2229,7 +2228,7 @@ namespace {
|
||||
static inline integerPart
|
||||
lowBitMask(unsigned int bits)
|
||||
{
|
||||
assert (bits != 0 && bits <= integerPartWidth);
|
||||
assert(bits != 0 && bits <= integerPartWidth);
|
||||
|
||||
return ~(integerPart) 0 >> (integerPartWidth - bits);
|
||||
}
|
||||
@ -2306,10 +2305,10 @@ APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
assert (parts > 0);
|
||||
assert(parts > 0);
|
||||
|
||||
dst[0] = part;
|
||||
for(i = 1; i < parts; i++)
|
||||
for (i = 1; i < parts; i++)
|
||||
dst[i] = 0;
|
||||
}
|
||||
|
||||
@ -2319,7 +2318,7 @@ APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
dst[i] = src[i];
|
||||
}
|
||||
|
||||
@ -2329,7 +2328,7 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
if (src[i])
|
||||
return false;
|
||||
|
||||
@ -2340,8 +2339,8 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts)
|
||||
int
|
||||
APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
|
||||
{
|
||||
return(parts[bit / integerPartWidth]
|
||||
& ((integerPart) 1 << bit % integerPartWidth)) != 0;
|
||||
return (parts[bit / integerPartWidth] &
|
||||
((integerPart) 1 << bit % integerPartWidth)) != 0;
|
||||
}
|
||||
|
||||
/* Set the given bit of a bignum. */
|
||||
@ -2366,7 +2365,7 @@ APInt::tcLSB(const integerPart *parts, unsigned int n)
|
||||
{
|
||||
unsigned int i, lsb;
|
||||
|
||||
for(i = 0; i < n; i++) {
|
||||
for (i = 0; i < n; i++) {
|
||||
if (parts[i] != 0) {
|
||||
lsb = partLSB(parts[i]);
|
||||
|
||||
@ -2385,13 +2384,13 @@ APInt::tcMSB(const integerPart *parts, unsigned int n)
|
||||
unsigned int msb;
|
||||
|
||||
do {
|
||||
--n;
|
||||
--n;
|
||||
|
||||
if (parts[n] != 0) {
|
||||
msb = partMSB(parts[n]);
|
||||
if (parts[n] != 0) {
|
||||
msb = partMSB(parts[n]);
|
||||
|
||||
return msb + n * integerPartWidth;
|
||||
}
|
||||
return msb + n * integerPartWidth;
|
||||
}
|
||||
} while (n);
|
||||
|
||||
return -1U;
|
||||
@ -2408,7 +2407,7 @@ APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
|
||||
unsigned int firstSrcPart, dstParts, shift, n;
|
||||
|
||||
dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
|
||||
assert (dstParts <= dstCount);
|
||||
assert(dstParts <= dstCount);
|
||||
|
||||
firstSrcPart = srcLSB / integerPartWidth;
|
||||
tcAssign (dst, src + firstSrcPart, dstParts);
|
||||
@ -2443,7 +2442,7 @@ APInt::tcAdd(integerPart *dst, const integerPart *rhs,
|
||||
|
||||
assert(c <= 1);
|
||||
|
||||
for(i = 0; i < parts; i++) {
|
||||
for (i = 0; i < parts; i++) {
|
||||
integerPart l;
|
||||
|
||||
l = dst[i];
|
||||
@ -2468,7 +2467,7 @@ APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
|
||||
|
||||
assert(c <= 1);
|
||||
|
||||
for(i = 0; i < parts; i++) {
|
||||
for (i = 0; i < parts; i++) {
|
||||
integerPart l;
|
||||
|
||||
l = dst[i];
|
||||
@ -2518,7 +2517,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
|
||||
/* N loops; minimum of dstParts and srcParts. */
|
||||
n = dstParts < srcParts ? dstParts: srcParts;
|
||||
|
||||
for(i = 0; i < n; i++) {
|
||||
for (i = 0; i < n; i++) {
|
||||
integerPart low, mid, high, srcPart;
|
||||
|
||||
/* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
|
||||
@ -2583,7 +2582,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
|
||||
non-zero. This is true if any remaining src parts are non-zero
|
||||
and the multiplier is non-zero. */
|
||||
if (multiplier)
|
||||
for(; i < srcParts; i++)
|
||||
for (; i < srcParts; i++)
|
||||
if (src[i])
|
||||
return 1;
|
||||
|
||||
@ -2608,7 +2607,7 @@ APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
|
||||
overflow = 0;
|
||||
tcSet(dst, 0, parts);
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
|
||||
parts - i, true);
|
||||
|
||||
@ -2634,7 +2633,7 @@ APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
|
||||
|
||||
tcSet(dst, 0, rhsParts);
|
||||
|
||||
for(n = 0; n < lhsParts; n++)
|
||||
for (n = 0; n < lhsParts; n++)
|
||||
tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
|
||||
|
||||
n = lhsParts + rhsParts;
|
||||
@ -2678,7 +2677,7 @@ APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
|
||||
|
||||
/* Loop, subtracting SRHS if REMAINDER is greater and adding that to
|
||||
the total. */
|
||||
for(;;) {
|
||||
for (;;) {
|
||||
int compare;
|
||||
|
||||
compare = tcCompare(remainder, srhs, parts);
|
||||
@ -2746,7 +2745,7 @@ APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
|
||||
|
||||
/* Perform the shift. This leaves the most significant COUNT bits
|
||||
of the result at zero. */
|
||||
for(i = 0; i < parts; i++) {
|
||||
for (i = 0; i < parts; i++) {
|
||||
integerPart part;
|
||||
|
||||
if (i + jump >= parts) {
|
||||
@ -2771,7 +2770,7 @@ APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
dst[i] &= rhs[i];
|
||||
}
|
||||
|
||||
@ -2781,7 +2780,7 @@ APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
dst[i] |= rhs[i];
|
||||
}
|
||||
|
||||
@ -2791,7 +2790,7 @@ APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
dst[i] ^= rhs[i];
|
||||
}
|
||||
|
||||
@ -2801,7 +2800,7 @@ APInt::tcComplement(integerPart *dst, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
dst[i] = ~dst[i];
|
||||
}
|
||||
|
||||
@ -2830,7 +2829,7 @@ APInt::tcIncrement(integerPart *dst, unsigned int parts)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for(i = 0; i < parts; i++)
|
||||
for (i = 0; i < parts; i++)
|
||||
if (++dst[i] != 0)
|
||||
break;
|
||||
|
||||
|
@ -676,8 +676,8 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
|
||||
<< " positional arguments: See: " << argv[0] << " -help\n";
|
||||
|
||||
ErrorParsing = true;
|
||||
} else if (!HasUnlimitedPositionals
|
||||
&& PositionalVals.size() > PositionalOpts.size()) {
|
||||
} else if (!HasUnlimitedPositionals &&
|
||||
PositionalVals.size() > PositionalOpts.size()) {
|
||||
errs() << ProgramName
|
||||
<< ": Too many positional arguments specified!\n"
|
||||
<< "Can specify at most " << PositionalOpts.size()
|
||||
|
@ -64,8 +64,7 @@ DebugOnly("debug-only", cl::desc("Enable a specific type of debug output"),
|
||||
cl::location(DebugOnlyOptLoc), cl::ValueRequired);
|
||||
|
||||
// Signal handlers - dump debug output on termination.
|
||||
static void debug_user_sig_handler(void *Cookie)
|
||||
{
|
||||
static void debug_user_sig_handler(void *Cookie) {
|
||||
// This is a bit sneaky. Since this is under #ifndef NDEBUG, we
|
||||
// know that debug mode is enabled and dbgs() really is a
|
||||
// circular_raw_ostream. If NDEBUG is defined, then dbgs() ==
|
||||
|
@ -71,4 +71,3 @@ void llvm_unreachable_internal(const char *msg, const char *file,
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -418,14 +418,14 @@ raw_fd_ostream::~raw_fd_ostream() {
|
||||
|
||||
|
||||
void raw_fd_ostream::write_impl(const char *Ptr, size_t Size) {
|
||||
assert (FD >= 0 && "File already closed.");
|
||||
assert(FD >= 0 && "File already closed.");
|
||||
pos += Size;
|
||||
if (::write(FD, Ptr, Size) != (ssize_t) Size)
|
||||
error_detected();
|
||||
}
|
||||
|
||||
void raw_fd_ostream::close() {
|
||||
assert (ShouldClose);
|
||||
assert(ShouldClose);
|
||||
ShouldClose = false;
|
||||
flush();
|
||||
if (::close(FD) != 0)
|
||||
|
Loading…
Reference in New Issue
Block a user