Vectorizer: Add support for loops with an unknown count. For example:

for (i=0; i<n; i++){
        a[i] = b[i+1] + c[i+3];
     }



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166165 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nadav Rotem 2012-10-18 05:29:12 +00:00
parent 6ebddd2d65
commit 1953ace81d
3 changed files with 164 additions and 75 deletions

View File

@ -28,6 +28,8 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Value.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/SmallVector.h"
@ -65,8 +67,8 @@ public:
/// Ctor.
SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
unsigned VecWidth):
Orig(OrigLoop), SE(Se), LI(Li), VF(VecWidth),
LPPassManager *Lpm, unsigned VecWidth):
Orig(OrigLoop), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth),
Builder(0), Induction(0), OldInduction(0) { }
~SingleBlockLoopVectorizer() {
@ -76,20 +78,20 @@ public:
// Perform the actual loop widening (vectorization).
void vectorize() {
///Create a new empty loop. Unlink the old loop and connect the new one.
copyEmptyLoop();
createEmptyLoop();
/// Widen each instruction in the old loop to a new one in the new loop.
vectorizeLoop();
// Delete the old loop.
deleteOldLoop();
// register the new loop.
cleanup();
}
private:
/// Create an empty loop, based on the loop ranges of the old loop.
void copyEmptyLoop();
void createEmptyLoop();
/// Copy and widen the instructions from the old loop.
void vectorizeLoop();
/// Delete the old loop.
void deleteOldLoop();
/// Insert the new loop to the loop hierarchy and pass manager.
void cleanup();
/// This instruction is un-vectorizable. Implement it as a sequence
/// of scalars.
@ -123,6 +125,8 @@ private:
ScalarEvolution *SE;
// Loop Info.
LoopInfo *LI;
// Loop Pass Manager;
LPPassManager *LPM;
// The vectorization factor to use.
unsigned VF;
@ -132,9 +136,9 @@ private:
// --- Vectorization state ---
/// The new Induction variable which was added to the new block.
Instruction *Induction;
PHINode *Induction;
/// The induction variable of the old basic block.
Instruction *OldInduction;
PHINode *OldInduction;
// Maps scalars to widened vectors.
DenseMap<Value*, Value*> WidenMap;
};
@ -184,6 +188,7 @@ struct LoopVectorize : public LoopPass {
ScalarEvolution *SE;
DataLayout *DL;
LoopInfo *LI;
DominatorTree *DT;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
// Only vectorize innermost loops.
@ -194,6 +199,7 @@ struct LoopVectorize : public LoopPass {
SE = &getAnalysis<ScalarEvolution>();
DL = getAnalysisIfAvailable<DataLayout>();
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTree>();
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
L->getHeader()->getParent()->getName() << "\"\n");
@ -203,8 +209,7 @@ struct LoopVectorize : public LoopPass {
unsigned MaxVF = LVL.getLoopMaxVF();
// Check that we can vectorize using the chosen vectorization width.
if ((MaxVF < DefaultVectorizationFactor) ||
(MaxVF % DefaultVectorizationFactor)) {
if (MaxVF < DefaultVectorizationFactor) {
DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
return false;
}
@ -212,11 +217,10 @@ struct LoopVectorize : public LoopPass {
DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
// If we decided that is is *legal* to vectorizer the loop. Do it.
SingleBlockLoopVectorizer LB(L, SE, LI, DefaultVectorizationFactor);
SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor);
LB.vectorize();
// The loop is now vectorized. Remove it from LMP.
LPM.deleteLoopFromQueue(L);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
@ -226,6 +230,7 @@ struct LoopVectorize : public LoopPass {
AU.addRequired<AliasAnalysis>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<DominatorTree>();
}
};
@ -378,28 +383,71 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
WidenMap[Instr] = VecResults;
}
void SingleBlockLoopVectorizer::copyEmptyLoop() {
assert(Orig->getNumBlocks() == 1 && "Invalid loop");
BasicBlock *PH = Orig->getLoopPreheader();
BasicBlock *ExitBlock = Orig->getExitBlock();
assert(ExitBlock && "Invalid loop exit");
void SingleBlockLoopVectorizer::createEmptyLoop() {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
// Create a new single-basic block loop.
BasicBlock *BB = BasicBlock::Create(PH->getContext(), "vectorizedloop",
PH->getParent(), ExitBlock);
[ ] <-- vector loop bypass.
/ |
/ v
| [ ] <-- vector pre header.
| |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
\ v
>[ ] <--- middle-block.
/ |
/ v
| [ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder. ()
\ |
\ v
>[ ] <-- exit block.
...
*/
// This is the original scalar-loop preheader.
BasicBlock *BypassBlock = Orig->getLoopPreheader();
BasicBlock *ExitBlock = Orig->getExitBlock();
assert(ExitBlock && "Must have an exit block");
BasicBlock *ScalarBody = Orig->getHeader();
assert(Orig->getNumBlocks() == 1 && "Invalid loop");
assert(ScalarBody && BypassBlock && "Invalid loop structure");
BasicBlock *VectorPH =
BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
"vector.body");
BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
"middle.block");
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
"scalar.preheader");
// Find the induction variable.
BasicBlock *OldBasicBlock = Orig->getHeader();
PHINode *OldInd = dyn_cast<PHINode>(OldBasicBlock->begin());
assert(OldInd && "We must have a single phi node.");
Type *IdxTy = OldInd->getType();
OldInduction = dyn_cast<PHINode>(OldBasicBlock->begin());
assert(OldInduction && "We must have a single phi node.");
Type *IdxTy = OldInduction->getType();
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
Builder = new IRBuilder<>(BB);
Builder = new IRBuilder<>(VecBody);
Builder->SetInsertPoint(VecBody->getFirstInsertionPt());
// Generate the induction variable.
PHINode *Phi = Builder->CreatePHI(IdxTy, 2, "index");
Induction = Builder->CreatePHI(IdxTy, 2, "index");
Constant *Zero = ConstantInt::get(IdxTy, 0);
Constant *Step = ConstantInt::get(IdxTy, VF);
@ -407,32 +455,78 @@ void SingleBlockLoopVectorizer::copyEmptyLoop() {
const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader());
assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
// Get the trip count from the count by adding 1.
// Get the total trip count from the count by adding 1.
ExitCount = SE->getAddExpr(ExitCount,
SE->getConstant(ExitCount->getType(), 1));
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, "induction");
Instruction *Loc = Orig->getLoopPreheader()->getTerminator();
if (ExitCount->getType() != Phi->getType())
ExitCount = SE->getSignExtendExpr(ExitCount, Phi->getType());
Value *Count = Exp.expandCodeFor(ExitCount, Phi->getType(), Loc);
Instruction *Loc = BypassBlock->getTerminator();
// We may need to extend the index in case there is a type mismatch.
// We know that the count starts at zero and does not overflow.
// We are using Zext because it should be less expensive.
if (ExitCount->getType() != Induction->getType())
ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
// Count holds the overall loop count (N).
Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
// Now we need to generate the expression for N - (N % VF), which is
// the part that the vectorized body will execute.
Constant *CIVF = ConstantInt::get(IdxTy, VF);
Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
// Now, compare the new count to zero. If it is zero, jump to the scalar part.
Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
CountRoundDown, ConstantInt::getNullValue(IdxTy),
"cmp.zero", Loc);
BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
// Remove the old terminator.
Loc->eraseFromParent();
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
// If (N - N%VF) == N, then we *don't* need to run the remainder.
Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
CountRoundDown, "cmp.n",
MiddleBlock->getTerminator());
BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
// Remove the old terminator.
MiddleBlock->getTerminator()->eraseFromParent();
// Create i+1 and fill the PHINode.
Value *Next = Builder->CreateAdd(Phi, Step, "index.next");
Phi->addIncoming(Zero, PH);
Phi->addIncoming(Next, BB);
Value *NextIdx = Builder->CreateAdd(Induction, Step, "index.next");
Induction->addIncoming(Zero, VectorPH);
Induction->addIncoming(NextIdx, VecBody);
// Create the compare.
Value *ICmp = Builder->CreateICmpEQ(Next, Count);
Builder->CreateCondBr(ICmp, ExitBlock, BB);
// Fix preheader.
PH->getTerminator()->setSuccessor(0, BB);
Builder->SetInsertPoint(BB->getFirstInsertionPt());
Value *ICmp = Builder->CreateICmpEQ(NextIdx, CountRoundDown);
Builder->CreateCondBr(ICmp, MiddleBlock, VecBody);
// Save the induction variables.
Induction = Phi;
OldInduction = OldInd;
// Now we have two terminators. Remove the old one from the block.
VecBody->getTerminator()->eraseFromParent();
// Fix the scalar body iteration count.
unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
OldInduction->setIncomingValue(BlockIdx, CountRoundDown);
// Get ready to start creating new instructions into the vectorized body.
Builder->SetInsertPoint(VecBody->getFirstInsertionPt());
// Register the new loop.
Loop* Lp = new Loop();
LPM->insertLoop(Lp, Orig->getParentLoop());
Lp->addBasicBlockToLoop(VecBody, LI->getBase());
Loop *ParentLoop = Orig->getParentLoop();
if (ParentLoop) {
ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
}
}
void SingleBlockLoopVectorizer::vectorizeLoop() {
@ -575,16 +669,9 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
}// end of for_each instr.
}
void SingleBlockLoopVectorizer::deleteOldLoop() {
void SingleBlockLoopVectorizer::cleanup() {
// The original basic block.
BasicBlock *BB = Orig->getHeader();
SE->forgetLoop(Orig);
LI->removeBlock(BB);
Orig->addBasicBlockToLoop(Induction->getParent(), LI->getBase());
// Remove the old loop block.
DeleteDeadBlock(BB);
}
unsigned LoopVectorizationLegality::getLoopMaxVF() {
@ -605,26 +692,25 @@ unsigned LoopVectorizationLegality::getLoopMaxVF() {
BasicBlock *BB = TheLoop->getHeader();
DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
// Find the max vectorization factor.
unsigned MaxVF = SE->getSmallConstantTripMultiple(TheLoop, BB);
// Perform an early check. Do not scan the block if we did not find a loop.
if (MaxVF < 2) {
DEBUG(dbgs() << "LV: Can't find a vectorizable loop structure\n");
return 1;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeBlock(*BB)) {
DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
return 1;
}
DEBUG(dbgs() << "LV: We can vectorize this loop! VF="<<MaxVF<<"\n");
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
if (ExitCount == SE->getCouldNotCompute()) {
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return 1;
}
// Okay! We can vectorize. Return the max trip multiple.
return MaxVF;
DEBUG(dbgs() << "LV: We can vectorize this loop!\n");
// Okay! We can vectorize. At this point we don't have any other mem analysis
// which may limit our maximum vectorization factor, so just return the
// maximum SIMD size.
return DefaultVectorizationFactor;
}
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
@ -725,6 +811,11 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
}
} // next instr.
if (NumPhis != 1) {
DEBUG(dbgs() << "LV: Did not find a Phi node.\n");
return false;
}
// Check that the underlying objects of the reads and writes are either
// disjoint memory locations, or that they are no-alias arguments.
ValueVector::iterator r, re, w, we;

View File

@ -45,9 +45,8 @@ define void @example1() nounwind uwtable ssp {
ret void
}
; We can't vectorize this loop because it has non constant loop bounds.
;CHECK: @example2
;CHECK-NOT: <4 x i32>
;CHECK: store <4 x i32>
;CHECK: ret void
define void @example2(i32 %n, i32 %x) nounwind uwtable ssp {
%1 = icmp sgt i32 %n, 0
@ -114,9 +113,8 @@ define void @example3(i32 %n, i32* noalias nocapture %p, i32* noalias nocapture
ret void
}
; We can't vectorize this loop because it has non constant loop bounds.
;CHECK: @example4
;CHECK-NOT: <4 x i32>
;CHECK: load <4 x i32>
;CHECK: ret void
define void @example4(i32 %n, i32* noalias nocapture %p, i32* noalias nocapture %q) nounwind uwtable ssp {
%1 = add nsw i32 %n, -1

View File

@ -9,7 +9,7 @@ target triple = "x86_64-apple-macosx10.8.0"
;CHECK: @example1
;CHECK: shl i32
;CHECK: sext i32
;CHECK: zext i32
;CHECK: load <4 x i32>
;CHECK: add <4 x i32>
;CHECK: store <4 x i32>