mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-28 04:33:05 +00:00
Add support for software expansion of 64-bit integer division instructions.
Patch by Dmitri Shtilman! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195116 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
0b843861c6
commit
1b3ab9199f
@ -7,10 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains an implementation of 32bit integer division for targets
|
||||
// that don't have native support. It's largely derived from compiler-rt's
|
||||
// implementation of __udivsi3, but hand-tuned for targets that prefer less
|
||||
// control flow.
|
||||
// This file contains an implementation of 32bit and 64bit scalar integer
|
||||
// division for targets that don't have native support. It's largely derived
|
||||
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
|
||||
// but hand-tuned for targets that prefer less control flow.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -26,9 +26,8 @@ namespace llvm {
|
||||
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||
/// with the generated code. This currently generates code using the udiv
|
||||
/// expansion, but future work includes generating more specialized code,
|
||||
/// e.g. when more information about the operands are known. Currently only
|
||||
/// implements 32bit scalar division (due to udiv's limitation), but future
|
||||
/// work is removing this limitation.
|
||||
/// e.g. when more information about the operands are known. Implements both
|
||||
/// 32bit and 64bit scalar division.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool expandRemainder(BinaryOperator *Rem);
|
||||
@ -36,27 +35,39 @@ namespace llvm {
|
||||
/// Generate code to divide two integers, replacing Div with the generated
|
||||
/// code. This currently generates code similarly to compiler-rt's
|
||||
/// implementations, but future work includes generating more specialized code
|
||||
/// when more information about the operands are known. Currently only
|
||||
/// implements 32bit scalar division, but future work is removing this
|
||||
/// limitation.
|
||||
/// when more information about the operands are known. Implements both
|
||||
/// 32bit and 64bit scalar division.
|
||||
///
|
||||
/// @brief Replace Div with generated code.
|
||||
bool expandDivision(BinaryOperator* Div);
|
||||
|
||||
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||
/// with the generated code. Uses the above 32bit routine, therefore adequate
|
||||
/// for targets with little or no support for less than 32 bit arithmetic.
|
||||
/// with the generated code. Uses ExpandReminder with a 32bit Rem which
|
||||
/// makes it useful for targets with little or no support for less than
|
||||
/// 32 bit arithmetic.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool expandRemainderUpTo32Bits(BinaryOperator *Rem);
|
||||
|
||||
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||
/// with the generated code. Uses ExpandReminder with a 64bit Rem.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool expandRemainderUpTo64Bits(BinaryOperator *Rem);
|
||||
|
||||
/// Generate code to divide two integers, replacing Div with the generated
|
||||
/// code. Uses the above 32bit routine, therefore adequate for targets with
|
||||
/// little or no support for less than 32 bit arithmetic.
|
||||
/// code. Uses ExpandDivision with a 32bit Div which makes it useful for
|
||||
/// targets with little or no support for less than 32 bit arithmetic.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool expandDivisionUpTo32Bits(BinaryOperator *Div);
|
||||
|
||||
/// Generate code to divide two integers, replacing Div with the generated
|
||||
/// code. Uses ExpandDivision with a 64bit Div.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool expandDivisionUpTo64Bits(BinaryOperator *Div);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
||||
|
@ -7,10 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains an implementation of 32bit scalar integer division for
|
||||
// targets that don't have native support. It's largely derived from
|
||||
// compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
|
||||
// amount of control flow
|
||||
// This file contains an implementation of 32bit and 64bit scalar integer
|
||||
// division for targets that don't have native support. It's largely derived
|
||||
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
|
||||
// but hand-tuned for targets that prefer less control flow.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -20,6 +20,7 @@
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Intrinsics.h"
|
||||
#include <utility>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
@ -31,7 +32,18 @@ using namespace llvm;
|
||||
/// be expanded if the user wishes
|
||||
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
||||
IRBuilder<> &Builder) {
|
||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
||||
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
|
||||
ConstantInt *Shift;
|
||||
|
||||
if (BitWidth == 64) {
|
||||
Shift = Builder.getInt64(63);
|
||||
} else {
|
||||
assert(BitWidth == 32 && "Unexpected bit width");
|
||||
Shift = Builder.getInt32(31);
|
||||
}
|
||||
|
||||
// Following instructions are generated for both i32 (shift 31) and
|
||||
// i64 (shift 63).
|
||||
|
||||
// ; %dividend_sgn = ashr i32 %dividend, 31
|
||||
// ; %divisor_sgn = ashr i32 %divisor, 31
|
||||
@ -42,8 +54,8 @@ static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
||||
// ; %urem = urem i32 %dividend, %divisor
|
||||
// ; %xored = xor i32 %urem, %dividend_sgn
|
||||
// ; %srem = sub i32 %xored, %dividend_sgn
|
||||
Value *DividendSign = Builder.CreateAShr(Dividend, ThirtyOne);
|
||||
Value *DivisorSign = Builder.CreateAShr(Divisor, ThirtyOne);
|
||||
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
|
||||
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
|
||||
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
|
||||
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
|
||||
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
|
||||
@ -68,6 +80,8 @@ static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
|
||||
IRBuilder<> &Builder) {
|
||||
// Remainder = Dividend - Quotient*Divisor
|
||||
|
||||
// Following instructions are generated for both i32 and i64
|
||||
|
||||
// ; %quotient = udiv i32 %dividend, %divisor
|
||||
// ; %product = mul i32 %divisor, %quotient
|
||||
// ; %remainder = sub i32 %dividend, %product
|
||||
@ -88,9 +102,20 @@ static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
|
||||
/// present, i.e. not folded), ready to be expanded if the user wishes.
|
||||
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
IRBuilder<> &Builder) {
|
||||
// Implementation taken from compiler-rt's __divsi3
|
||||
// Implementation taken from compiler-rt's __divsi3 and __divdi3
|
||||
|
||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
||||
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
|
||||
ConstantInt *Shift;
|
||||
|
||||
if (BitWidth == 64) {
|
||||
Shift = Builder.getInt64(63);
|
||||
} else {
|
||||
assert(BitWidth == 32 && "Unexpected bit width");
|
||||
Shift = Builder.getInt32(31);
|
||||
}
|
||||
|
||||
// Following instructions are generated for both i32 (shift 31) and
|
||||
// i64 (shift 63).
|
||||
|
||||
// ; %tmp = ashr i32 %dividend, 31
|
||||
// ; %tmp1 = ashr i32 %divisor, 31
|
||||
@ -102,8 +127,8 @@ static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
|
||||
// ; %tmp4 = xor i32 %q_mag, %q_sgn
|
||||
// ; %q = sub i32 %tmp4, %q_sgn
|
||||
Value *Tmp = Builder.CreateAShr(Dividend, ThirtyOne);
|
||||
Value *Tmp1 = Builder.CreateAShr(Divisor, ThirtyOne);
|
||||
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
|
||||
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
|
||||
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
|
||||
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
|
||||
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
|
||||
@ -119,9 +144,9 @@ static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
return Q;
|
||||
}
|
||||
|
||||
/// Generates code to divide two unsigned scalar 32-bit integers. Returns the
|
||||
/// quotient, rounded towards 0. Builder's insert point should be pointing where
|
||||
/// the caller wants code generated, e.g. at the udiv instruction.
|
||||
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
|
||||
/// Returns the quotient, rounded towards 0. Builder's insert point should
|
||||
/// point where the caller wants code generated, e.g. at the udiv instruction.
|
||||
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
IRBuilder<> &Builder) {
|
||||
// The basic algorithm can be found in the compiler-rt project's
|
||||
@ -129,18 +154,33 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// that's been hand-tuned to lessen the amount of control flow involved.
|
||||
|
||||
// Some helper values
|
||||
IntegerType *I32Ty = Builder.getInt32Ty();
|
||||
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
|
||||
unsigned BitWidth = DivTy->getBitWidth();
|
||||
|
||||
ConstantInt *Zero = Builder.getInt32(0);
|
||||
ConstantInt *One = Builder.getInt32(1);
|
||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
||||
ConstantInt *NegOne = ConstantInt::getSigned(I32Ty, -1);
|
||||
ConstantInt *True = Builder.getTrue();
|
||||
ConstantInt *Zero;
|
||||
ConstantInt *One;
|
||||
ConstantInt *NegOne;
|
||||
ConstantInt *MSB;
|
||||
|
||||
if (BitWidth == 64) {
|
||||
Zero = Builder.getInt64(0);
|
||||
One = Builder.getInt64(1);
|
||||
NegOne = ConstantInt::getSigned(DivTy, -1);
|
||||
MSB = Builder.getInt64(63);
|
||||
} else {
|
||||
assert(BitWidth == 32 && "Unexpected bit width");
|
||||
Zero = Builder.getInt32(0);
|
||||
One = Builder.getInt32(1);
|
||||
NegOne = ConstantInt::getSigned(DivTy, -1);
|
||||
MSB = Builder.getInt32(31);
|
||||
}
|
||||
|
||||
ConstantInt *True = Builder.getTrue();
|
||||
|
||||
BasicBlock *IBB = Builder.GetInsertBlock();
|
||||
Function *F = IBB->getParent();
|
||||
Function *CTLZi32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
|
||||
I32Ty);
|
||||
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
|
||||
DivTy);
|
||||
|
||||
// Our CFG is going to look like:
|
||||
// +---------------------+
|
||||
@ -190,6 +230,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// We'll be overwriting the terminator to insert our extra blocks
|
||||
SpecialCases->getTerminator()->eraseFromParent();
|
||||
|
||||
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
|
||||
|
||||
// First off, check for special cases: dividend or divisor is zero, divisor
|
||||
// is greater than dividend, and divisor is 1.
|
||||
// ; special-cases:
|
||||
@ -209,12 +251,12 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
|
||||
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
|
||||
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
|
||||
Value *Tmp0 = Builder.CreateCall2(CTLZi32, Divisor, True);
|
||||
Value *Tmp1 = Builder.CreateCall2(CTLZi32, Dividend, True);
|
||||
Value *Tmp0 = Builder.CreateCall2(CTLZ, Divisor, True);
|
||||
Value *Tmp1 = Builder.CreateCall2(CTLZ, Dividend, True);
|
||||
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
|
||||
Value *Ret0_4 = Builder.CreateICmpUGT(SR, ThirtyOne);
|
||||
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
|
||||
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
|
||||
Value *RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
|
||||
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
|
||||
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
|
||||
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
|
||||
Builder.CreateCondBr(EarlyRet, End, BB1);
|
||||
@ -227,7 +269,7 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// ; br i1 %skipLoop, label %loop-exit, label %preheader
|
||||
Builder.SetInsertPoint(BB1);
|
||||
Value *SR_1 = Builder.CreateAdd(SR, One);
|
||||
Value *Tmp2 = Builder.CreateSub(ThirtyOne, SR);
|
||||
Value *Tmp2 = Builder.CreateSub(MSB, SR);
|
||||
Value *Q = Builder.CreateShl(Dividend, Tmp2);
|
||||
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
|
||||
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
|
||||
@ -260,17 +302,17 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// ; %tmp12 = icmp eq i32 %sr_2, 0
|
||||
// ; br i1 %tmp12, label %loop-exit, label %do-while
|
||||
Builder.SetInsertPoint(DoWhile);
|
||||
PHINode *Carry_1 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *SR_3 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *R_1 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *Q_2 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
|
||||
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
|
||||
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
|
||||
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
|
||||
Value *Tmp5 = Builder.CreateShl(R_1, One);
|
||||
Value *Tmp6 = Builder.CreateLShr(Q_2, ThirtyOne);
|
||||
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
|
||||
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
|
||||
Value *Tmp8 = Builder.CreateShl(Q_2, One);
|
||||
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
|
||||
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
|
||||
Value *Tmp10 = Builder.CreateAShr(Tmp9, 31);
|
||||
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
|
||||
Value *Carry = Builder.CreateAnd(Tmp10, One);
|
||||
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
|
||||
Value *R = Builder.CreateSub(Tmp7, Tmp11);
|
||||
@ -285,8 +327,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// ; %q_4 = or i32 %carry_2, %tmp13
|
||||
// ; br label %end
|
||||
Builder.SetInsertPoint(LoopExit);
|
||||
PHINode *Carry_2 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *Q_3 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
|
||||
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
|
||||
Value *Tmp13 = Builder.CreateShl(Q_3, One);
|
||||
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
|
||||
Builder.CreateBr(End);
|
||||
@ -295,7 +337,7 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
|
||||
// ; ret i32 %q_5
|
||||
Builder.SetInsertPoint(End, End->begin());
|
||||
PHINode *Q_5 = Builder.CreatePHI(I32Ty, 2);
|
||||
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
|
||||
|
||||
// Populate the Phis, since all values have now been created. Our Phis were:
|
||||
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
|
||||
@ -326,9 +368,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||
/// Generate code to calculate the remainder of two integers, replacing Rem with
|
||||
/// the generated code. This currently generates code using the udiv expansion,
|
||||
/// but future work includes generating more specialized code, e.g. when more
|
||||
/// information about the operands are known. Currently only implements 32bit
|
||||
/// scalar division (due to udiv's limitation), but future work is removing this
|
||||
/// limitation.
|
||||
/// information about the operands are known. Implements both 32bit and 64bit
|
||||
/// scalar division.
|
||||
///
|
||||
/// @brief Replace Rem with generated code.
|
||||
bool llvm::expandRemainder(BinaryOperator *Rem) {
|
||||
@ -338,6 +379,15 @@ bool llvm::expandRemainder(BinaryOperator *Rem) {
|
||||
|
||||
IRBuilder<> Builder(Rem);
|
||||
|
||||
Type *RemTy = Rem->getType();
|
||||
if (RemTy->isVectorTy())
|
||||
llvm_unreachable("Div over vectors not supported");
|
||||
|
||||
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
|
||||
|
||||
if (RemTyBitWidth != 32 && RemTyBitWidth != 64)
|
||||
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
|
||||
|
||||
// First prepare the sign if it's a signed remainder
|
||||
if (Rem->getOpcode() == Instruction::SRem) {
|
||||
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
|
||||
@ -376,9 +426,8 @@ bool llvm::expandRemainder(BinaryOperator *Rem) {
|
||||
/// Generate code to divide two integers, replacing Div with the generated
|
||||
/// code. This currently generates code similarly to compiler-rt's
|
||||
/// implementations, but future work includes generating more specialized code
|
||||
/// when more information about the operands are known. Currently only
|
||||
/// implements 32bit scalar division, but future work is removing this
|
||||
/// limitation.
|
||||
/// when more information about the operands are known. Implements both
|
||||
/// 32bit and 64bit scalar division.
|
||||
///
|
||||
/// @brief Replace Div with generated code.
|
||||
bool llvm::expandDivision(BinaryOperator *Div) {
|
||||
@ -388,9 +437,15 @@ bool llvm::expandDivision(BinaryOperator *Div) {
|
||||
|
||||
IRBuilder<> Builder(Div);
|
||||
|
||||
if (Div->getType()->isVectorTy())
|
||||
Type *DivTy = Div->getType();
|
||||
if (DivTy->isVectorTy())
|
||||
llvm_unreachable("Div over vectors not supported");
|
||||
|
||||
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
|
||||
|
||||
if (DivTyBitWidth != 32 && DivTyBitWidth != 64)
|
||||
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
|
||||
|
||||
// First prepare the sign if it's a signed division
|
||||
if (Div->getOpcode() == Instruction::SDiv) {
|
||||
// Lower the code to unsigned division, and reset Div to point to the udiv.
|
||||
@ -443,7 +498,7 @@ bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
|
||||
if (RemTyBitWidth == 32)
|
||||
return expandRemainder(Rem);
|
||||
|
||||
// If bitwidth smaller than 32 extend inputs, truncate output and proceed
|
||||
// If bitwidth smaller than 32 extend inputs, extend output and proceed
|
||||
// with 32 bit division.
|
||||
IRBuilder<> Builder(Rem);
|
||||
|
||||
@ -471,6 +526,55 @@ bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
|
||||
return expandRemainder(cast<BinaryOperator>(ExtRem));
|
||||
}
|
||||
|
||||
/// Generate code to compute the remainder of two integers of bitwidth up to
|
||||
/// 64 bits. Uses the above routines and extends the inputs/truncates the
|
||||
/// outputs to operate in 64 bits.
|
||||
///
|
||||
/// @brief Replace Rem with emulation code.
|
||||
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
|
||||
assert((Rem->getOpcode() == Instruction::SRem ||
|
||||
Rem->getOpcode() == Instruction::URem) &&
|
||||
"Trying to expand remainder from a non-remainder function");
|
||||
|
||||
Type *RemTy = Rem->getType();
|
||||
if (RemTy->isVectorTy())
|
||||
llvm_unreachable("Div over vectors not supported");
|
||||
|
||||
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
|
||||
|
||||
if (RemTyBitWidth > 64)
|
||||
llvm_unreachable("Div of bitwidth greater than 64 not supported");
|
||||
|
||||
if (RemTyBitWidth == 64)
|
||||
return expandRemainder(Rem);
|
||||
|
||||
// If bitwidth smaller than 64 extend inputs, extend output and proceed
|
||||
// with 64 bit division.
|
||||
IRBuilder<> Builder(Rem);
|
||||
|
||||
Value *ExtDividend;
|
||||
Value *ExtDivisor;
|
||||
Value *ExtRem;
|
||||
Value *Trunc;
|
||||
Type *Int64Ty = Builder.getInt64Ty();
|
||||
|
||||
if (Rem->getOpcode() == Instruction::SRem) {
|
||||
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
|
||||
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
|
||||
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
|
||||
} else {
|
||||
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
|
||||
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
|
||||
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
|
||||
}
|
||||
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
|
||||
|
||||
Rem->replaceAllUsesWith(Trunc);
|
||||
Rem->dropAllReferences();
|
||||
Rem->eraseFromParent();
|
||||
|
||||
return expandRemainder(cast<BinaryOperator>(ExtRem));
|
||||
}
|
||||
|
||||
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
|
||||
/// above routines and extends the inputs/truncates the outputs to operate
|
||||
@ -495,7 +599,7 @@ bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
|
||||
if (DivTyBitWidth == 32)
|
||||
return expandDivision(Div);
|
||||
|
||||
// If bitwidth smaller than 32 extend inputs, truncate output and proceed
|
||||
// If bitwidth smaller than 32 extend inputs, extend output and proceed
|
||||
// with 32 bit division.
|
||||
IRBuilder<> Builder(Div);
|
||||
|
||||
@ -522,3 +626,53 @@ bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
|
||||
|
||||
return expandDivision(cast<BinaryOperator>(ExtDiv));
|
||||
}
|
||||
|
||||
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
|
||||
/// above routines and extends the inputs/truncates the outputs to operate
|
||||
/// in 64 bits.
|
||||
///
|
||||
/// @brief Replace Div with emulation code.
|
||||
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
|
||||
assert((Div->getOpcode() == Instruction::SDiv ||
|
||||
Div->getOpcode() == Instruction::UDiv) &&
|
||||
"Trying to expand division from a non-division function");
|
||||
|
||||
Type *DivTy = Div->getType();
|
||||
if (DivTy->isVectorTy())
|
||||
llvm_unreachable("Div over vectors not supported");
|
||||
|
||||
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
|
||||
|
||||
if (DivTyBitWidth > 64)
|
||||
llvm_unreachable("Div of bitwidth greater than 64 not supported");
|
||||
|
||||
if (DivTyBitWidth == 64)
|
||||
return expandDivision(Div);
|
||||
|
||||
// If bitwidth smaller than 64 extend inputs, extend output and proceed
|
||||
// with 64 bit division.
|
||||
IRBuilder<> Builder(Div);
|
||||
|
||||
Value *ExtDividend;
|
||||
Value *ExtDivisor;
|
||||
Value *ExtDiv;
|
||||
Value *Trunc;
|
||||
Type *Int64Ty = Builder.getInt64Ty();
|
||||
|
||||
if (Div->getOpcode() == Instruction::SDiv) {
|
||||
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
|
||||
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
|
||||
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
|
||||
} else {
|
||||
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
|
||||
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
|
||||
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
|
||||
}
|
||||
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
|
||||
|
||||
Div->replaceAllUsesWith(Trunc);
|
||||
Div->dropAllReferences();
|
||||
Div->eraseFromParent();
|
||||
|
||||
return expandDivision(cast<BinaryOperator>(ExtDiv));
|
||||
}
|
||||
|
@ -19,6 +19,7 @@ using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
|
||||
TEST(IntegerDivision, SDiv) {
|
||||
LLVMContext &C(getGlobalContext());
|
||||
Module M("test division", C);
|
||||
@ -139,4 +140,125 @@ TEST(IntegerDivision, URem) {
|
||||
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||
}
|
||||
|
||||
|
||||
TEST(IntegerDivision, SDiv64) {
|
||||
LLVMContext &C(getGlobalContext());
|
||||
Module M("test division", C);
|
||||
IRBuilder<> Builder(C);
|
||||
|
||||
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||
ArgTys, false),
|
||||
GlobalValue::ExternalLinkage, "F", &M);
|
||||
assert(F->getArgumentList().size() == 2);
|
||||
|
||||
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||
Builder.SetInsertPoint(BB);
|
||||
|
||||
Function::arg_iterator AI = F->arg_begin();
|
||||
Value *A = AI++;
|
||||
Value *B = AI++;
|
||||
|
||||
Value *Div = Builder.CreateSDiv(A, B);
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::SDiv);
|
||||
|
||||
Value *Ret = Builder.CreateRet(Div);
|
||||
|
||||
expandDivision(cast<BinaryOperator>(Div));
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::AShr);
|
||||
|
||||
Instruction* Quotient = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||
EXPECT_TRUE(Quotient && Quotient->getOpcode() == Instruction::Sub);
|
||||
}
|
||||
|
||||
TEST(IntegerDivision, UDiv64) {
|
||||
LLVMContext &C(getGlobalContext());
|
||||
Module M("test division", C);
|
||||
IRBuilder<> Builder(C);
|
||||
|
||||
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||
ArgTys, false),
|
||||
GlobalValue::ExternalLinkage, "F", &M);
|
||||
assert(F->getArgumentList().size() == 2);
|
||||
|
||||
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||
Builder.SetInsertPoint(BB);
|
||||
|
||||
Function::arg_iterator AI = F->arg_begin();
|
||||
Value *A = AI++;
|
||||
Value *B = AI++;
|
||||
|
||||
Value *Div = Builder.CreateUDiv(A, B);
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::UDiv);
|
||||
|
||||
Value *Ret = Builder.CreateRet(Div);
|
||||
|
||||
expandDivision(cast<BinaryOperator>(Div));
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::ICmp);
|
||||
|
||||
Instruction* Quotient = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||
EXPECT_TRUE(Quotient && Quotient->getOpcode() == Instruction::PHI);
|
||||
}
|
||||
|
||||
TEST(IntegerDivision, SRem64) {
|
||||
LLVMContext &C(getGlobalContext());
|
||||
Module M("test remainder", C);
|
||||
IRBuilder<> Builder(C);
|
||||
|
||||
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||
ArgTys, false),
|
||||
GlobalValue::ExternalLinkage, "F", &M);
|
||||
assert(F->getArgumentList().size() == 2);
|
||||
|
||||
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||
Builder.SetInsertPoint(BB);
|
||||
|
||||
Function::arg_iterator AI = F->arg_begin();
|
||||
Value *A = AI++;
|
||||
Value *B = AI++;
|
||||
|
||||
Value *Rem = Builder.CreateSRem(A, B);
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::SRem);
|
||||
|
||||
Value *Ret = Builder.CreateRet(Rem);
|
||||
|
||||
expandRemainder(cast<BinaryOperator>(Rem));
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::AShr);
|
||||
|
||||
Instruction* Remainder = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||
}
|
||||
|
||||
TEST(IntegerDivision, URem64) {
|
||||
LLVMContext &C(getGlobalContext());
|
||||
Module M("test remainder", C);
|
||||
IRBuilder<> Builder(C);
|
||||
|
||||
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||
ArgTys, false),
|
||||
GlobalValue::ExternalLinkage, "F", &M);
|
||||
assert(F->getArgumentList().size() == 2);
|
||||
|
||||
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||
Builder.SetInsertPoint(BB);
|
||||
|
||||
Function::arg_iterator AI = F->arg_begin();
|
||||
Value *A = AI++;
|
||||
Value *B = AI++;
|
||||
|
||||
Value *Rem = Builder.CreateURem(A, B);
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::URem);
|
||||
|
||||
Value *Ret = Builder.CreateRet(Rem);
|
||||
|
||||
expandRemainder(cast<BinaryOperator>(Rem));
|
||||
EXPECT_TRUE(BB->front().getOpcode() == Instruction::ICmp);
|
||||
|
||||
Instruction* Remainder = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user