mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-08 21:32:39 +00:00
Initial implementation of the SelectionDAGISel class. This contains most
of the code for lowering from LLVM code to a SelectionDAG. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19331 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b75c12de67
commit
1c08c714bb
853
lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Normal file
853
lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Normal file
@ -0,0 +1,853 @@
|
||||
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This implements the SelectionDAGISel class.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "isel"
|
||||
#include "llvm/CodeGen/SelectionDAGISel.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Intrinsics.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/SelectionDAG.h"
|
||||
#include "llvm/CodeGen/SSARegMap.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Target/TargetFrameInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
using namespace llvm;
|
||||
|
||||
namespace llvm {
|
||||
//===--------------------------------------------------------------------===//
|
||||
/// FunctionLoweringInfo - This contains information that is global to a
|
||||
/// function that is used when lowering a region of the function.
|
||||
struct FunctionLoweringInfo {
|
||||
TargetLowering &TLI;
|
||||
Function &Fn;
|
||||
MachineFunction &MF;
|
||||
SSARegMap *RegMap;
|
||||
|
||||
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
|
||||
|
||||
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
|
||||
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
|
||||
|
||||
/// ValueMap - Since we emit code for the function a basic block at a time,
|
||||
/// we must remember which virtual registers hold the values for
|
||||
/// cross-basic-block values.
|
||||
std::map<const Value*, unsigned> ValueMap;
|
||||
|
||||
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
|
||||
/// the entry block. This allows the allocas to be efficiently referenced
|
||||
/// anywhere in the function.
|
||||
std::map<const AllocaInst*, int> StaticAllocaMap;
|
||||
|
||||
unsigned MakeReg(MVT::ValueType VT) {
|
||||
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
||||
}
|
||||
|
||||
unsigned CreateRegForValue(const Value *V) {
|
||||
MVT::ValueType VT = TLI.getValueType(V->getType());
|
||||
// The common case is that we will only create one register for this
|
||||
// value. If we have that case, create and return the virtual register.
|
||||
unsigned NV = TLI.getNumElements(VT);
|
||||
if (NV == 1) return MakeReg(VT);
|
||||
|
||||
// If this value is represented with multiple target registers, make sure
|
||||
// to create enough consequtive registers of the right (smaller) type.
|
||||
unsigned NT = VT-1; // Find the type to use.
|
||||
while (TLI.getNumElements((MVT::ValueType)NT) != 1)
|
||||
--NT;
|
||||
|
||||
unsigned R = MakeReg((MVT::ValueType)NT);
|
||||
for (unsigned i = 1; i != NV; ++i)
|
||||
MakeReg((MVT::ValueType)NT);
|
||||
return R;
|
||||
}
|
||||
|
||||
unsigned InitializeRegForValue(const Value *V) {
|
||||
unsigned &R = ValueMap[V];
|
||||
assert(R == 0 && "Already initialized this value register!");
|
||||
return R = CreateRegForValue(V);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
||||
/// PHI nodes or outside of the basic block that defines it.
|
||||
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
|
||||
if (isa<PHINode>(I)) return true;
|
||||
BasicBlock *BB = I->getParent();
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
|
||||
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
|
||||
Function &fn, MachineFunction &mf)
|
||||
: TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
|
||||
|
||||
// Initialize the mapping of values to registers. This is only set up for
|
||||
// instruction values that are used outside of the block that defines
|
||||
// them.
|
||||
for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI)
|
||||
InitializeRegForValue(AI);
|
||||
|
||||
Function::iterator BB = Fn.begin(), E = Fn.end();
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
||||
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
|
||||
const Type *Ty = AI->getAllocatedType();
|
||||
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
||||
unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
|
||||
TySize *= CUI->getValue(); // Get total allocated size.
|
||||
StaticAllocaMap[AI] =
|
||||
MF.getFrameInfo()->CreateStackObject(TySize, Align);
|
||||
}
|
||||
|
||||
for (; BB != E; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
|
||||
if (!isa<AllocaInst>(I) ||
|
||||
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
||||
InitializeRegForValue(I);
|
||||
|
||||
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
||||
// also creates the initial PHI MachineInstrs, though none of the input
|
||||
// operands are populated.
|
||||
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
||||
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
|
||||
MBBMap[BB] = MBB;
|
||||
MF.getBasicBlockList().push_back(MBB);
|
||||
|
||||
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
||||
// appropriate.
|
||||
PHINode *PN;
|
||||
for (BasicBlock::iterator I = BB->begin();
|
||||
(PN = dyn_cast<PHINode>(I)); ++I) {
|
||||
unsigned NumElements =TLI.getNumElements(TLI.getValueType(PN->getType()));
|
||||
unsigned PHIReg = ValueMap[PN];
|
||||
assert(PHIReg && "PHI node does not have an assigned virtual register!");
|
||||
for (unsigned i = 0; i != NumElements; ++i)
|
||||
BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// SelectionDAGLowering - This is the common target-independent lowering
|
||||
/// implementation that is parameterized by a TargetLowering object.
|
||||
/// Also, targets can overload any lowering method.
|
||||
///
|
||||
namespace llvm {
|
||||
class SelectionDAGLowering {
|
||||
MachineBasicBlock *CurMBB;
|
||||
|
||||
std::map<const Value*, SDOperand> NodeMap;
|
||||
|
||||
public:
|
||||
// TLI - This is information that describes the available target features we
|
||||
// need for lowering. This indicates when operations are unavailable,
|
||||
// implemented with a libcall, etc.
|
||||
TargetLowering &TLI;
|
||||
SelectionDAG &DAG;
|
||||
const TargetData &TD;
|
||||
|
||||
/// FuncInfo - Information about the function as a whole.
|
||||
///
|
||||
FunctionLoweringInfo &FuncInfo;
|
||||
|
||||
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
|
||||
FunctionLoweringInfo &funcinfo)
|
||||
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
|
||||
FuncInfo(funcinfo) {
|
||||
}
|
||||
|
||||
void visit(Instruction &I) { visit(I.getOpcode(), I); }
|
||||
|
||||
void visit(unsigned Opcode, User &I) {
|
||||
switch (Opcode) {
|
||||
default: assert(0 && "Unknown instruction type encountered!");
|
||||
abort();
|
||||
// Build the switch statement using the Instruction.def file.
|
||||
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
||||
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
|
||||
#include "llvm/Instruction.def"
|
||||
}
|
||||
}
|
||||
|
||||
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
|
||||
|
||||
|
||||
SDOperand getIntPtrConstant(uint64_t Val) {
|
||||
return DAG.getConstant(Val, TLI.getPointerTy());
|
||||
}
|
||||
|
||||
SDOperand getValue(const Value *V) {
|
||||
SDOperand &N = NodeMap[V];
|
||||
if (N.Val) return N;
|
||||
|
||||
MVT::ValueType VT = TLI.getValueType(V->getType());
|
||||
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
||||
visit(CE->getOpcode(), *CE);
|
||||
assert(N.Val && "visit didn't populate the ValueMap!");
|
||||
return N;
|
||||
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
||||
return N = DAG.getGlobalAddress(GV, VT);
|
||||
} else if (isa<ConstantPointerNull>(C)) {
|
||||
return N = DAG.getConstant(0, TLI.getPointerTy());
|
||||
} else if (isa<UndefValue>(C)) {
|
||||
/// FIXME: Implement UNDEFVALUE better.
|
||||
if (MVT::isInteger(VT))
|
||||
return N = DAG.getConstant(0, VT);
|
||||
else if (MVT::isFloatingPoint(VT))
|
||||
return N = DAG.getConstantFP(0, VT);
|
||||
else
|
||||
assert(0 && "Unknown value type!");
|
||||
|
||||
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
||||
return N = DAG.getConstantFP(CFP->getValue(), VT);
|
||||
} else {
|
||||
// Canonicalize all constant ints to be unsigned.
|
||||
return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
|
||||
}
|
||||
|
||||
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
||||
std::map<const AllocaInst*, int>::iterator SI =
|
||||
FuncInfo.StaticAllocaMap.find(AI);
|
||||
if (SI != FuncInfo.StaticAllocaMap.end())
|
||||
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
|
||||
}
|
||||
|
||||
std::map<const Value*, unsigned>::const_iterator VMI =
|
||||
FuncInfo.ValueMap.find(V);
|
||||
assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
|
||||
return N = DAG.getCopyFromReg(VMI->second, VT);
|
||||
}
|
||||
|
||||
const SDOperand &setValue(const Value *V, SDOperand NewN) {
|
||||
SDOperand &N = NodeMap[V];
|
||||
assert(N.Val == 0 && "Already set a value for this node!");
|
||||
return N = NewN;
|
||||
}
|
||||
|
||||
// Terminator instructions.
|
||||
void visitRet(ReturnInst &I);
|
||||
void visitBr(BranchInst &I);
|
||||
void visitUnreachable(UnreachableInst &I) { /* noop */ }
|
||||
|
||||
// These all get lowered before this pass.
|
||||
void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
|
||||
void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
|
||||
void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
|
||||
|
||||
//
|
||||
void visitBinary(User &I, unsigned Opcode);
|
||||
void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
|
||||
void visitSub(User &I) { visitBinary(I, ISD::SUB); }
|
||||
void visitMul(User &I) { visitBinary(I, ISD::MUL); }
|
||||
void visitDiv(User &I) {
|
||||
visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
|
||||
}
|
||||
void visitRem(User &I) {
|
||||
visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
|
||||
}
|
||||
void visitAnd(User &I) { visitBinary(I, ISD::AND); }
|
||||
void visitOr (User &I) { visitBinary(I, ISD::OR); }
|
||||
void visitXor(User &I) { visitBinary(I, ISD::XOR); }
|
||||
void visitShl(User &I) { visitBinary(I, ISD::SHL); }
|
||||
void visitShr(User &I) {
|
||||
visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
|
||||
}
|
||||
|
||||
void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
|
||||
void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
|
||||
void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
|
||||
void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
|
||||
void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
|
||||
void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
|
||||
void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
|
||||
|
||||
void visitGetElementPtr(User &I);
|
||||
void visitCast(User &I);
|
||||
void visitSelect(User &I);
|
||||
//
|
||||
|
||||
void visitMalloc(MallocInst &I);
|
||||
void visitFree(FreeInst &I);
|
||||
void visitAlloca(AllocaInst &I);
|
||||
void visitLoad(LoadInst &I);
|
||||
void visitStore(StoreInst &I);
|
||||
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
|
||||
void visitCall(CallInst &I);
|
||||
|
||||
// FIXME: These should go through the FunctionLoweringInfo object!!!
|
||||
void visitVAStart(CallInst &I);
|
||||
void visitVANext(VANextInst &I);
|
||||
void visitVAArg(VAArgInst &I);
|
||||
void visitVAEnd(CallInst &I);
|
||||
void visitVACopy(CallInst &I);
|
||||
void visitReturnAddress(CallInst &I);
|
||||
void visitFrameAddress(CallInst &I);
|
||||
|
||||
void visitMemSet(CallInst &I);
|
||||
void visitMemCpy(CallInst &I);
|
||||
void visitMemMove(CallInst &I);
|
||||
|
||||
void visitUserOp1(Instruction &I) {
|
||||
assert(0 && "UserOp1 should not exist at instruction selection time!");
|
||||
abort();
|
||||
}
|
||||
void visitUserOp2(Instruction &I) {
|
||||
assert(0 && "UserOp2 should not exist at instruction selection time!");
|
||||
abort();
|
||||
}
|
||||
};
|
||||
} // end namespace llvm
|
||||
|
||||
void SelectionDAGLowering::visitRet(ReturnInst &I) {
|
||||
if (I.getNumOperands() == 0) {
|
||||
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot()));
|
||||
return;
|
||||
}
|
||||
|
||||
SDOperand Op1 = getValue(I.getOperand(0));
|
||||
switch (Op1.getValueType()) {
|
||||
default: assert(0 && "Unknown value type!");
|
||||
case MVT::i1:
|
||||
case MVT::i8:
|
||||
case MVT::i16:
|
||||
// Extend integer types to 32-bits.
|
||||
if (I.getOperand(0)->getType()->isSigned())
|
||||
Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1);
|
||||
else
|
||||
Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1);
|
||||
break;
|
||||
case MVT::f32:
|
||||
// Extend float to double.
|
||||
Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
|
||||
break;
|
||||
case MVT::i32:
|
||||
case MVT::i64:
|
||||
case MVT::f64:
|
||||
break; // No extension needed!
|
||||
}
|
||||
|
||||
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot(), Op1));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitBr(BranchInst &I) {
|
||||
// Update machine-CFG edges.
|
||||
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
|
||||
CurMBB->addSuccessor(Succ0MBB);
|
||||
|
||||
// Figure out which block is immediately after the current one.
|
||||
MachineBasicBlock *NextBlock = 0;
|
||||
MachineFunction::iterator BBI = CurMBB;
|
||||
if (++BBI != CurMBB->getParent()->end())
|
||||
NextBlock = BBI;
|
||||
|
||||
if (I.isUnconditional()) {
|
||||
// If this is not a fall-through branch, emit the branch.
|
||||
if (Succ0MBB != NextBlock)
|
||||
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
|
||||
DAG.getBasicBlock(Succ0MBB)));
|
||||
} else {
|
||||
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
|
||||
CurMBB->addSuccessor(Succ1MBB);
|
||||
|
||||
SDOperand Cond = getValue(I.getCondition());
|
||||
|
||||
if (Succ1MBB == NextBlock) {
|
||||
// If the condition is false, fall through. This means we should branch
|
||||
// if the condition is true to Succ #0.
|
||||
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
||||
Cond, DAG.getBasicBlock(Succ0MBB)));
|
||||
} else if (Succ0MBB == NextBlock) {
|
||||
// If the condition is true, fall through. This means we should branch if
|
||||
// the condition is false to Succ #1. Invert the condition first.
|
||||
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
||||
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
||||
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
||||
Cond, DAG.getBasicBlock(Succ1MBB)));
|
||||
} else {
|
||||
// Neither edge is a fall through. If the comparison is true, jump to
|
||||
// Succ#0, otherwise branch unconditionally to succ #1.
|
||||
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
||||
Cond, DAG.getBasicBlock(Succ0MBB)));
|
||||
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
|
||||
DAG.getBasicBlock(Succ1MBB)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
|
||||
SDOperand Op1 = getValue(I.getOperand(0));
|
||||
SDOperand Op2 = getValue(I.getOperand(1));
|
||||
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
|
||||
ISD::CondCode UnsignedOpcode) {
|
||||
SDOperand Op1 = getValue(I.getOperand(0));
|
||||
SDOperand Op2 = getValue(I.getOperand(1));
|
||||
ISD::CondCode Opcode = SignedOpcode;
|
||||
if (I.getOperand(0)->getType()->isUnsigned())
|
||||
Opcode = UnsignedOpcode;
|
||||
setValue(&I, DAG.getSetCC(Opcode, Op1, Op2));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitSelect(User &I) {
|
||||
SDOperand Cond = getValue(I.getOperand(0));
|
||||
SDOperand TrueVal = getValue(I.getOperand(1));
|
||||
SDOperand FalseVal = getValue(I.getOperand(2));
|
||||
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
|
||||
TrueVal, FalseVal));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitCast(User &I) {
|
||||
SDOperand N = getValue(I.getOperand(0));
|
||||
MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
|
||||
MVT::ValueType DestTy = TLI.getValueType(I.getType());
|
||||
|
||||
if (N.getValueType() == DestTy) {
|
||||
setValue(&I, N); // noop cast.
|
||||
return;
|
||||
} else if (isInteger(SrcTy) && isInteger(DestTy)) {
|
||||
if (DestTy < SrcTy) // Truncating cast?
|
||||
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
|
||||
else if (I.getOperand(0)->getType()->isSigned())
|
||||
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
|
||||
else
|
||||
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
|
||||
return;
|
||||
} else if (isFloatingPoint(SrcTy) && isFloatingPoint(DestTy)) {
|
||||
if (DestTy < SrcTy) // Rounding cast?
|
||||
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
|
||||
else
|
||||
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
|
||||
} else {
|
||||
// F->I or I->F
|
||||
// FIXME: implement integer/fp conversions!
|
||||
assert(0 && "This CAST is not yet implemented!\n");
|
||||
}
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitGetElementPtr(User &I) {
|
||||
SDOperand N = getValue(I.getOperand(0));
|
||||
const Type *Ty = I.getOperand(0)->getType();
|
||||
const Type *UIntPtrTy = TD.getIntPtrType();
|
||||
|
||||
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
|
||||
OI != E; ++OI) {
|
||||
Value *Idx = *OI;
|
||||
if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
|
||||
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
||||
if (Field) {
|
||||
// N = N + Offset
|
||||
uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
|
||||
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
|
||||
getIntPtrConstant(Offset));
|
||||
}
|
||||
Ty = StTy->getElementType(Field);
|
||||
} else {
|
||||
Ty = cast<SequentialType>(Ty)->getElementType();
|
||||
if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
|
||||
// N = N + Idx * ElementSize;
|
||||
uint64_t ElementSize = TD.getTypeSize(Ty);
|
||||
SDOperand IdxN = getValue(Idx);
|
||||
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN,
|
||||
getIntPtrConstant(ElementSize));
|
||||
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
||||
}
|
||||
}
|
||||
}
|
||||
setValue(&I, N);
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
|
||||
// If this is a fixed sized alloca in the entry block of the function,
|
||||
// allocate it statically on the stack.
|
||||
if (FuncInfo.StaticAllocaMap.count(&I))
|
||||
return; // getValue will auto-populate this.
|
||||
|
||||
const Type *Ty = I.getAllocatedType();
|
||||
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
||||
unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
|
||||
|
||||
SDOperand AllocSize = getValue(I.getArraySize());
|
||||
|
||||
assert(AllocSize.getValueType() == TLI.getPointerTy() &&
|
||||
"FIXME: should extend or truncate to pointer size!");
|
||||
|
||||
AllocSize = DAG.getNode(ISD::MUL, TLI.getPointerTy(), AllocSize,
|
||||
getIntPtrConstant(TySize));
|
||||
|
||||
// Handle alignment. If the requested alignment is less than or equal to the
|
||||
// stack alignment, ignore it and round the size of the allocation up to the
|
||||
// stack alignment size. If the size is greater than the stack alignment, we
|
||||
// note this in the DYNAMIC_STACKALLOC node.
|
||||
unsigned StackAlign =
|
||||
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
|
||||
if (Align <= StackAlign) {
|
||||
Align = 0;
|
||||
// Add SA-1 to the size.
|
||||
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
|
||||
getIntPtrConstant(StackAlign-1));
|
||||
// Mask out the low bits for alignment purposes.
|
||||
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
|
||||
getIntPtrConstant(~(uint64_t)(StackAlign-1)));
|
||||
}
|
||||
|
||||
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
|
||||
DAG.getRoot(), AllocSize,
|
||||
getIntPtrConstant(Align));
|
||||
DAG.setRoot(setValue(&I, DSA).getValue(1));
|
||||
|
||||
// Inform the Frame Information that we have just allocated a variable-sized
|
||||
// object.
|
||||
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
|
||||
}
|
||||
|
||||
|
||||
void SelectionDAGLowering::visitLoad(LoadInst &I) {
|
||||
SDOperand Ptr = getValue(I.getOperand(0));
|
||||
SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), DAG.getRoot(), Ptr);
|
||||
DAG.setRoot(setValue(&I, L).getValue(1));
|
||||
}
|
||||
|
||||
|
||||
void SelectionDAGLowering::visitStore(StoreInst &I) {
|
||||
Value *SrcV = I.getOperand(0);
|
||||
SDOperand Src = getValue(SrcV);
|
||||
SDOperand Ptr = getValue(I.getOperand(1));
|
||||
DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, DAG.getRoot(), Src, Ptr));
|
||||
return;
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitCall(CallInst &I) {
|
||||
if (Function *F = I.getCalledFunction())
|
||||
switch (F->getIntrinsicID()) {
|
||||
case 0: break; // Not an intrinsic.
|
||||
case Intrinsic::vastart: visitVAStart(I); return;
|
||||
case Intrinsic::vaend: visitVAEnd(I); return;
|
||||
case Intrinsic::vacopy: visitVACopy(I); return;
|
||||
case Intrinsic::returnaddress:
|
||||
visitReturnAddress(I); return;
|
||||
case Intrinsic::frameaddress:
|
||||
visitFrameAddress(I); return;
|
||||
default:
|
||||
// FIXME: IMPLEMENT THESE.
|
||||
// readport, writeport, readio, writeio
|
||||
assert(0 && "This intrinsic is not implemented yet!");
|
||||
return;
|
||||
case Intrinsic::memcpy: visitMemCpy(I); return;
|
||||
case Intrinsic::memset: visitMemSet(I); return;
|
||||
case Intrinsic::memmove: visitMemMove(I); return;
|
||||
|
||||
case Intrinsic::isunordered:
|
||||
setValue(&I, DAG.getSetCC(ISD::SETUO, getValue(I.getOperand(1)),
|
||||
getValue(I.getOperand(2))));
|
||||
return;
|
||||
}
|
||||
|
||||
SDOperand Callee = getValue(I.getOperand(0));
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
|
||||
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
||||
Value *Arg = I.getOperand(i);
|
||||
SDOperand ArgNode = getValue(Arg);
|
||||
Args.push_back(std::make_pair(ArgNode, Arg->getType()));
|
||||
}
|
||||
|
||||
SDNode *Result = TLI.LowerCallTo(I.getType(), Callee, Args, DAG);
|
||||
if (I.getType() != Type::VoidTy)
|
||||
setValue(&I, SDOperand(Result, 0));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
|
||||
SDOperand Src = getValue(I.getOperand(0));
|
||||
|
||||
MVT::ValueType IntPtr = TLI.getPointerTy();
|
||||
// FIXME: Extend or truncate to the intptr size.
|
||||
assert(Src.getValueType() == IntPtr && "Need to adjust the amount!");
|
||||
|
||||
// Scale the source by the type size.
|
||||
uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
|
||||
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
|
||||
Src, getIntPtrConstant(ElementSize));
|
||||
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
|
||||
SDNode *C = TLI.LowerCallTo(I.getType(),
|
||||
DAG.getExternalSymbol("malloc", IntPtr),
|
||||
Args, DAG);
|
||||
setValue(&I, SDOperand(C, 0)); // Pointers always fit in registers
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitFree(FreeInst &I) {
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(0)),
|
||||
TLI.getTargetData().getIntPtrType()));
|
||||
MVT::ValueType IntPtr = TLI.getPointerTy();
|
||||
TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("free", IntPtr),
|
||||
Args, DAG);
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitVAStart(CallInst &I) {
|
||||
// We have no sane default behavior, just emit a useful error message and bail
|
||||
// out.
|
||||
std::cerr << "Variable arguments support not implemented for this target!\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitVANext(VANextInst &I) {
|
||||
// We have no sane default behavior, just emit a useful error message and bail
|
||||
// out.
|
||||
std::cerr << "Variable arguments support not implemented for this target!\n";
|
||||
abort();
|
||||
}
|
||||
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
|
||||
// We have no sane default behavior, just emit a useful error message and bail
|
||||
// out.
|
||||
std::cerr << "Variable arguments support not implemented for this target!\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
|
||||
// By default, this is a noop. On almost all targets, this is fine.
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitVACopy(CallInst &I) {
|
||||
// By default, vacopy just does a simple pointer copy.
|
||||
setValue(&I, getValue(I.getOperand(1)));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitReturnAddress(CallInst &I) {
|
||||
// It is always conservatively correct for llvm.returnaddress to return 0.
|
||||
setValue(&I, getIntPtrConstant(0));
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitFrameAddress(CallInst &I) {
|
||||
// It is always conservatively correct for llvm.frameaddress to return 0.
|
||||
setValue(&I, getIntPtrConstant(0));
|
||||
}
|
||||
|
||||
|
||||
void SelectionDAGLowering::visitMemSet(CallInst &I) {
|
||||
MVT::ValueType IntPtr = TLI.getPointerTy();
|
||||
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
||||
|
||||
// Extend the ubyte argument to be an int value for the call.
|
||||
SDOperand Val = getValue(I.getOperand(2));
|
||||
Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Val);
|
||||
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
||||
Args.push_back(std::make_pair(Val, Type::IntTy));
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
||||
|
||||
TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memset", IntPtr),
|
||||
Args, DAG);
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitMemCpy(CallInst &I) {
|
||||
MVT::ValueType IntPtr = TLI.getPointerTy();
|
||||
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
||||
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
||||
|
||||
TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memcpy", IntPtr),
|
||||
Args, DAG);
|
||||
}
|
||||
|
||||
void SelectionDAGLowering::visitMemMove(CallInst &I) {
|
||||
MVT::ValueType IntPtr = TLI.getPointerTy();
|
||||
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
||||
|
||||
std::vector<std::pair<SDOperand, const Type*> > Args;
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
|
||||
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
||||
|
||||
TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memmove", IntPtr),
|
||||
Args, DAG);
|
||||
}
|
||||
|
||||
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
|
||||
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool SelectionDAGISel::runOnFunction(Function &Fn) {
|
||||
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
|
||||
RegMap = MF.getSSARegMap();
|
||||
DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
|
||||
|
||||
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
|
||||
|
||||
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
||||
SelectBasicBlock(I, MF, FuncInfo);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void SelectionDAGISel::CopyValueToVirtualRegister(SelectionDAGLowering &SDL,
|
||||
Value *V, unsigned Reg) {
|
||||
SelectionDAG &DAG = SDL.DAG;
|
||||
DAG.setRoot(DAG.getCopyToReg(DAG.getRoot(), SDL.getValue(V), Reg));
|
||||
}
|
||||
|
||||
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
|
||||
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
|
||||
FunctionLoweringInfo &FuncInfo) {
|
||||
SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
|
||||
|
||||
// If this is the entry block, emit arguments.
|
||||
Function *F = LLVMBB->getParent();
|
||||
if (LLVMBB == &F->front()) {
|
||||
// FIXME: If an argument is only used in one basic block, we could directly
|
||||
// emit it (ONLY) into that block, not emitting the COPY_TO_VREG node. This
|
||||
// would improve codegen in several cases on X86 by allowing the loads to be
|
||||
// folded into the user operation.
|
||||
std::vector<SDOperand> Args = TLI.LowerArguments(*LLVMBB->getParent(), DAG);
|
||||
|
||||
unsigned a = 0;
|
||||
for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI,++a)
|
||||
if (!AI->use_empty()) {
|
||||
SDL.setValue(AI, Args[a]);
|
||||
CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
|
||||
}
|
||||
}
|
||||
|
||||
BB = FuncInfo.MBBMap[LLVMBB];
|
||||
SDL.setCurrentBasicBlock(BB);
|
||||
|
||||
// Lower all of the non-terminator instructions.
|
||||
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
|
||||
I != E; ++I)
|
||||
SDL.visit(*I);
|
||||
|
||||
// Ensure that all instructions which are used outside of their defining
|
||||
// blocks are available as virtual registers.
|
||||
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
|
||||
if (!I->use_empty()) {
|
||||
std::map<const Value*, unsigned>::iterator VMI =
|
||||
FuncInfo.ValueMap.find(I);
|
||||
if (VMI != FuncInfo.ValueMap.end())
|
||||
CopyValueToVirtualRegister(SDL, I, VMI->second);
|
||||
}
|
||||
|
||||
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
|
||||
// ensure constants are generated when needed. Remember the virtual registers
|
||||
// that need to be added to the Machine PHI nodes as input. We cannot just
|
||||
// directly add them, because expansion might result in multiple MBB's for one
|
||||
// BB. As such, the start of the BB might correspond to a different MBB than
|
||||
// the end.
|
||||
//
|
||||
|
||||
// Emit constants only once even if used by multiple PHI nodes.
|
||||
std::map<Constant*, unsigned> ConstantsOut;
|
||||
|
||||
// Check successor nodes PHI nodes that expect a constant to be available from
|
||||
// this block.
|
||||
TerminatorInst *TI = LLVMBB->getTerminator();
|
||||
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
||||
BasicBlock *SuccBB = TI->getSuccessor(succ);
|
||||
MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
|
||||
PHINode *PN;
|
||||
|
||||
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
||||
// nodes and Machine PHI nodes, but the incoming operands have not been
|
||||
// emitted yet.
|
||||
for (BasicBlock::iterator I = SuccBB->begin();
|
||||
(PN = dyn_cast<PHINode>(I)); ++I) {
|
||||
unsigned Reg;
|
||||
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
||||
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
|
||||
unsigned &RegOut = ConstantsOut[C];
|
||||
if (RegOut == 0) {
|
||||
RegOut = FuncInfo.CreateRegForValue(C);
|
||||
CopyValueToVirtualRegister(SDL, C, RegOut);
|
||||
}
|
||||
Reg = RegOut;
|
||||
} else {
|
||||
Reg = FuncInfo.ValueMap[PHIOp];
|
||||
assert(Reg && "Didn't codegen value into a register!??");
|
||||
}
|
||||
|
||||
// Remember that this register needs to added to the machine PHI node as
|
||||
// the input for this MBB.
|
||||
unsigned NumElements =TLI.getNumElements(TLI.getValueType(PN->getType()));
|
||||
for (unsigned i = 0, e = NumElements; i != e; ++i)
|
||||
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
|
||||
}
|
||||
}
|
||||
ConstantsOut.clear();
|
||||
|
||||
// Lower the terminator after the copies are emitted.
|
||||
SDL.visit(*LLVMBB->getTerminator());
|
||||
}
|
||||
|
||||
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
|
||||
FunctionLoweringInfo &FuncInfo) {
|
||||
SelectionDAG DAG(TLI.getTargetMachine(), MF);
|
||||
CurDAG = &DAG;
|
||||
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
|
||||
|
||||
// First step, lower LLVM code to some DAG. This DAG may use operations and
|
||||
// types that are not supported by the target.
|
||||
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
|
||||
|
||||
DEBUG(std::cerr << "Lowered selection DAG:\n");
|
||||
DEBUG(DAG.dump());
|
||||
|
||||
// Second step, hack on the DAG until it only uses operations and types that
|
||||
// the target supports.
|
||||
DAG.Legalize(TLI);
|
||||
|
||||
DEBUG(std::cerr << "Legalized selection DAG:\n");
|
||||
DEBUG(DAG.dump());
|
||||
|
||||
// Finally, instruction select all of the operations to machine code, adding
|
||||
// the code to the MachineBasicBlock.
|
||||
InstructionSelectBasicBlock(DAG);
|
||||
|
||||
DEBUG(std::cerr << "Selected machine code:\n");
|
||||
DEBUG(BB->dump());
|
||||
|
||||
// Finally, now that we know what the last MBB the LLVM BB expanded is, update
|
||||
// PHI nodes in successors.
|
||||
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
|
||||
MachineInstr *PHI = PHINodesToUpdate[i].first;
|
||||
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
||||
"This is not a machine PHI node that we are updating!");
|
||||
PHI->addRegOperand(PHINodesToUpdate[i].second);
|
||||
PHI->addMachineBasicBlockOperand(BB);
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user