Convert ScalarEvolution to use BumpPtrAllocator and FoldingSet, instead

of a team of individual allocations and a team of std::maps.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74393 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-06-27 21:21:31 +00:00
parent 0a928335fa
commit 1c34375f79
3 changed files with 244 additions and 167 deletions

View File

@ -25,6 +25,8 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/DenseMap.h"
#include <iosfwd>
@ -34,20 +36,12 @@ namespace llvm {
class Type;
class ScalarEvolution;
class TargetData;
class SCEVConstant;
class SCEVTruncateExpr;
class SCEVZeroExtendExpr;
class SCEVCommutativeExpr;
class SCEVUDivExpr;
class SCEVSignExtendExpr;
class SCEVAddRecExpr;
class SCEVUnknown;
/// SCEV - This class represents an analyzed expression in the program. These
/// are opaque objects that the client is not allowed to do much with
/// directly.
///
class SCEV {
class SCEV : public FoldingSetNode {
const unsigned SCEVType; // The SCEV baseclass this node corresponds to
SCEV(const SCEV &); // DO NOT IMPLEMENT
@ -58,6 +52,8 @@ namespace llvm {
explicit SCEV(unsigned SCEVTy) :
SCEVType(SCEVTy) {}
virtual void Profile(FoldingSetNodeID &ID) const = 0;
unsigned getSCEVType() const { return SCEVType; }
/// isLoopInvariant - Return true if the value of this SCEV is unchanging in
@ -132,6 +128,7 @@ namespace llvm {
SCEVCouldNotCompute();
// None of these methods are valid for this object.
virtual void Profile(FoldingSetNodeID &ID) const;
virtual bool isLoopInvariant(const Loop *L) const;
virtual const Type *getType() const;
virtual bool hasComputableLoopEvolution(const Loop *L) const;
@ -182,7 +179,7 @@ namespace llvm {
/// CouldNotCompute - This SCEV is used to represent unknown trip
/// counts and things.
const SCEV* CouldNotCompute;
SCEVCouldNotCompute CouldNotCompute;
/// Scalars - This is a cache of the scalars we have analyzed so far.
///
@ -566,23 +563,10 @@ namespace llvm {
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
private:
// Uniquing tables.
std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
std::map<std::pair<const SCEV*, const Type*>,
SCEVTruncateExpr*> SCEVTruncates;
std::map<std::pair<const SCEV*, const Type*>,
SCEVZeroExtendExpr*> SCEVZeroExtends;
std::map<std::pair<unsigned, std::vector<const SCEV*> >,
SCEVCommutativeExpr*> SCEVCommExprs;
std::map<std::pair<const SCEV*, const SCEV*>,
SCEVUDivExpr*> SCEVUDivs;
std::map<std::pair<const SCEV*, const Type*>,
SCEVSignExtendExpr*> SCEVSignExtends;
std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
SCEVAddRecExpr*> SCEVAddRecExprs;
std::map<Value*, SCEVUnknown*> SCEVUnknowns;
FoldingSet<SCEV> UniqueSCEVs;
BumpPtrAllocator SCEVAllocator;
};
}

View File

@ -39,6 +39,8 @@ namespace llvm {
explicit SCEVConstant(ConstantInt *v) :
SCEV(scConstant), V(v) {}
public:
virtual void Profile(FoldingSetNodeID &ID) const;
ConstantInt *getValue() const { return V; }
virtual bool isLoopInvariant(const Loop *L) const {
@ -81,6 +83,8 @@ namespace llvm {
SCEVCastExpr(unsigned SCEVTy, const SCEV* op, const Type *ty);
public:
virtual void Profile(FoldingSetNodeID &ID) const;
const SCEV* getOperand() const { return Op; }
virtual const Type *getType() const { return Ty; }
@ -200,6 +204,8 @@ namespace llvm {
: SCEV(T), Operands(ops.begin(), ops.end()) {}
public:
virtual void Profile(FoldingSetNodeID &ID) const;
unsigned getNumOperands() const { return (unsigned)Operands.size(); }
const SCEV* getOperand(unsigned i) const {
assert(i < Operands.size() && "Operand index out of range!");
@ -330,6 +336,8 @@ namespace llvm {
: SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {}
public:
virtual void Profile(FoldingSetNodeID &ID) const;
const SCEV* getLHS() const { return LHS; }
const SCEV* getRHS() const { return RHS; }
@ -389,6 +397,8 @@ namespace llvm {
}
public:
virtual void Profile(FoldingSetNodeID &ID) const;
const SCEV* getStart() const { return Operands[0]; }
const Loop *getLoop() const { return L; }
@ -505,6 +515,8 @@ namespace llvm {
SCEV(scUnknown), V(v) {}
public:
virtual void Profile(FoldingSetNodeID &ID) const;
Value *getValue() const { return V; }
virtual bool isLoopInvariant(const Loop *L) const;

View File

@ -142,6 +142,10 @@ bool SCEV::isAllOnesValue() const {
SCEVCouldNotCompute::SCEVCouldNotCompute() :
SCEV(scCouldNotCompute) {}
void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const {
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
}
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
return false;
@ -174,9 +178,15 @@ bool SCEVCouldNotCompute::classof(const SCEV *S) {
}
const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
SCEVConstant *&R = SCEVConstants[V];
if (R == 0) R = new SCEVConstant(V);
return R;
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
new (S) SCEVConstant(V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
@ -188,6 +198,11 @@ ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
}
void SCEVConstant::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(scConstant);
ID.AddPointer(V);
}
const Type *SCEVConstant::getType() const { return V->getType(); }
void SCEVConstant::print(raw_ostream &OS) const {
@ -198,6 +213,12 @@ SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
const SCEV* op, const Type *ty)
: SCEV(SCEVTy), Op(op), Ty(ty) {}
void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(getSCEVType());
ID.AddPointer(Op);
ID.AddPointer(Ty);
}
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return Op->dominates(BB, DT);
}
@ -277,6 +298,13 @@ SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
return this;
}
void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(getSCEVType());
ID.AddInteger(Operands.size());
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
ID.AddPointer(Operands[i]);
}
bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (!getOperand(i)->dominates(BB, DT))
@ -285,6 +313,12 @@ bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return true;
}
void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(scUDivExpr);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
}
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
}
@ -302,6 +336,14 @@ const Type *SCEVUDivExpr::getType() const {
return RHS->getType();
}
void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(scAddRecExpr);
ID.AddInteger(Operands.size());
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
ID.AddPointer(Operands[i]);
ID.AddPointer(L);
}
const SCEV *
SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
const SCEV *Conc,
@ -353,6 +395,11 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "}<" << L->getHeader()->getName() + ">";
}
void SCEVUnknown::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(scUnknown);
ID.AddPointer(V);
}
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
// All non-instruction values are loop invariant. All instructions are loop
// invariant if they are not contained in the specified loop.
@ -720,9 +767,16 @@ const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
return getAddRecExpr(Operands, AddRec->getLoop());
}
SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scTruncate);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
new (S) SCEVTruncateExpr(Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
@ -808,9 +862,16 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
}
}
SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scZeroExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
new (S) SCEVZeroExtendExpr(Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
@ -880,9 +941,16 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
}
}
SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scSignExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
new (S) SCEVSignExtendExpr(Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
@ -1343,11 +1411,17 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an add expr. Check to see if we
// already have one, otherwise create a new one.
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
SCEVOps)];
if (Result == 0) Result = new SCEVAddExpr(Ops);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scAddExpr);
ID.AddInteger(Ops.size());
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
new (S) SCEVAddExpr(Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@ -1508,12 +1582,17 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an mul expr. Check to see if we
// already have one, otherwise create a new one.
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
SCEVOps)];
if (Result == 0)
Result = new SCEVMulExpr(Ops);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scMulExpr);
ID.AddInteger(Ops.size());
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
new (S) SCEVMulExpr(Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
/// getUDivExpr - Get a canonical multiply expression, or something simpler if
@ -1603,9 +1682,16 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
}
}
SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scUDivExpr);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
new (S) SCEVUDivExpr(LHS, RHS);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@ -1677,10 +1763,18 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
}
}
std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scAddRecExpr);
ID.AddInteger(Operands.size());
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
ID.AddPointer(Operands[i]);
ID.AddPointer(L);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
new (S) SCEVAddRecExpr(Operands, L);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
@ -1767,11 +1861,17 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an smax expr. Check to see if we
// already have one, otherwise create a new one.
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
SCEVOps)];
if (Result == 0) Result = new SCEVSMaxExpr(Ops);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scSMaxExpr);
ID.AddInteger(Ops.size());
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
new (S) SCEVSMaxExpr(Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
@ -1858,11 +1958,17 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need a umax expr. Check to see if we
// already have one, otherwise create a new one.
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
SCEVOps)];
if (Result == 0) Result = new SCEVUMaxExpr(Ops);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scUMaxExpr);
ID.AddInteger(Ops.size());
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
new (S) SCEVUMaxExpr(Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
@ -1883,9 +1989,15 @@ const SCEV* ScalarEvolution::getUnknown(Value *V) {
// interesting possibilities, and any other code that calls getUnknown
// is doing so in order to hide a value from SCEV canonicalization.
SCEVUnknown *&Result = SCEVUnknowns[V];
if (Result == 0) Result = new SCEVUnknown(V);
return Result;
FoldingSetNodeID ID;
ID.AddInteger(scUnknown);
ID.AddPointer(V);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
new (S) SCEVUnknown(V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
//===----------------------------------------------------------------------===//
@ -1939,7 +2051,7 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
}
const SCEV* ScalarEvolution::getCouldNotCompute() {
return CouldNotCompute;
return &CouldNotCompute;
}
/// hasSCEV - Return true if the SCEV for this value has already been
@ -2750,7 +2862,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
if (Pair.second) {
BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
if (ItCount.Exact != CouldNotCompute) {
if (ItCount.Exact != getCouldNotCompute()) {
assert(ItCount.Exact->isLoopInvariant(L) &&
ItCount.Max->isLoopInvariant(L) &&
"Computed trip count isn't loop invariant for loop!");
@ -2759,7 +2871,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// Update the value in the map.
Pair.first->second = ItCount;
} else {
if (ItCount.Max != CouldNotCompute)
if (ItCount.Max != getCouldNotCompute())
// Update the value in the map.
Pair.first->second = ItCount;
if (isa<PHINode>(L->getHeader()->begin()))
@ -2825,27 +2937,27 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
L->getExitingBlocks(ExitingBlocks);
// Examine all exits and pick the most conservative values.
const SCEV* BECount = CouldNotCompute;
const SCEV* MaxBECount = CouldNotCompute;
const SCEV* BECount = getCouldNotCompute();
const SCEV* MaxBECount = getCouldNotCompute();
bool CouldNotComputeBECount = false;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BackedgeTakenInfo NewBTI =
ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
if (NewBTI.Exact == CouldNotCompute) {
if (NewBTI.Exact == getCouldNotCompute()) {
// We couldn't compute an exact value for this exit, so
// we won't be able to compute an exact value for the loop.
CouldNotComputeBECount = true;
BECount = CouldNotCompute;
BECount = getCouldNotCompute();
} else if (!CouldNotComputeBECount) {
if (BECount == CouldNotCompute)
if (BECount == getCouldNotCompute())
BECount = NewBTI.Exact;
else
BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
}
if (MaxBECount == CouldNotCompute)
if (MaxBECount == getCouldNotCompute())
MaxBECount = NewBTI.Max;
else if (NewBTI.Max != CouldNotCompute)
else if (NewBTI.Max != getCouldNotCompute())
MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
}
@ -2863,7 +2975,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
//
// FIXME: we should be able to handle switch instructions (with a single exit)
BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (ExitBr == 0) return CouldNotCompute;
if (ExitBr == 0) return getCouldNotCompute();
assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
// At this point, we know we have a conditional branch that determines whether
@ -2892,7 +3004,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
BasicBlock *Pred = BB->getUniquePredecessor();
if (!Pred)
return CouldNotCompute;
return getCouldNotCompute();
TerminatorInst *PredTerm = Pred->getTerminator();
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
BasicBlock *PredSucc = PredTerm->getSuccessor(i);
@ -2901,7 +3013,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
// If the predecessor has a successor that isn't BB and isn't
// outside the loop, assume the worst.
if (L->contains(PredSucc))
return CouldNotCompute;
return getCouldNotCompute();
}
if (Pred == L->getHeader()) {
Ok = true;
@ -2910,7 +3022,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
BB = Pred;
}
if (!Ok)
return CouldNotCompute;
return getCouldNotCompute();
}
// Procede to the next level to examine the exit condition expression.
@ -2935,27 +3047,30 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
const SCEV* BECount = CouldNotCompute;
const SCEV* MaxBECount = CouldNotCompute;
const SCEV* BECount = getCouldNotCompute();
const SCEV* MaxBECount = getCouldNotCompute();
if (L->contains(TBB)) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
BECount = CouldNotCompute;
if (BTI0.Exact == getCouldNotCompute() ||
BTI1.Exact == getCouldNotCompute())
BECount = getCouldNotCompute();
else
BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
if (BTI0.Max == CouldNotCompute)
if (BTI0.Max == getCouldNotCompute())
MaxBECount = BTI1.Max;
else if (BTI1.Max == CouldNotCompute)
else if (BTI1.Max == getCouldNotCompute())
MaxBECount = BTI0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
} else {
// Both conditions must be true for the loop to exit.
assert(L->contains(FBB) && "Loop block has no successor in loop!");
if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
if (BTI0.Exact != getCouldNotCompute() &&
BTI1.Exact != getCouldNotCompute())
BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
if (BTI0.Max != getCouldNotCompute() &&
BTI1.Max != getCouldNotCompute())
MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
}
@ -2967,27 +3082,30 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
const SCEV* BECount = CouldNotCompute;
const SCEV* MaxBECount = CouldNotCompute;
const SCEV* BECount = getCouldNotCompute();
const SCEV* MaxBECount = getCouldNotCompute();
if (L->contains(FBB)) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
BECount = CouldNotCompute;
if (BTI0.Exact == getCouldNotCompute() ||
BTI1.Exact == getCouldNotCompute())
BECount = getCouldNotCompute();
else
BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
if (BTI0.Max == CouldNotCompute)
if (BTI0.Max == getCouldNotCompute())
MaxBECount = BTI1.Max;
else if (BTI1.Max == CouldNotCompute)
else if (BTI1.Max == getCouldNotCompute())
MaxBECount = BTI0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
} else {
// Both conditions must be false for the loop to exit.
assert(L->contains(TBB) && "Loop block has no successor in loop!");
if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
if (BTI0.Exact != getCouldNotCompute() &&
BTI1.Exact != getCouldNotCompute())
BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
if (BTI0.Max != getCouldNotCompute() &&
BTI1.Max != getCouldNotCompute())
MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
}
@ -3164,11 +3282,11 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
Constant *RHS,
const Loop *L,
ICmpInst::Predicate predicate) {
if (LI->isVolatile()) return CouldNotCompute;
if (LI->isVolatile()) return getCouldNotCompute();
// Check to see if the loaded pointer is a getelementptr of a global.
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
if (!GEP) return CouldNotCompute;
if (!GEP) return getCouldNotCompute();
// Make sure that it is really a constant global we are gepping, with an
// initializer, and make sure the first IDX is really 0.
@ -3176,7 +3294,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
return CouldNotCompute;
return getCouldNotCompute();
// Okay, we allow one non-constant index into the GEP instruction.
Value *VarIdx = 0;
@ -3186,7 +3304,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
Indexes.push_back(CI);
} else if (!isa<ConstantInt>(GEP->getOperand(i))) {
if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
VarIdx = GEP->getOperand(i);
VarIdxNum = i-2;
Indexes.push_back(0);
@ -3203,7 +3321,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
return CouldNotCompute;
return getCouldNotCompute();
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
@ -3230,7 +3348,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
return getConstant(ItCst); // Found terminating iteration!
}
}
return CouldNotCompute;
return getCouldNotCompute();
}
@ -3371,13 +3489,13 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
/// constant number of times (the condition evolves only from constants),
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
/// evaluate the trip count of the loop, return CouldNotCompute.
/// evaluate the trip count of the loop, return getCouldNotCompute().
const SCEV *
ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
if (PN == 0) return CouldNotCompute;
if (PN == 0) return getCouldNotCompute();
// Since the loop is canonicalized, the PHI node must have two entries. One
// entry must be a constant (coming in from outside of the loop), and the
@ -3385,11 +3503,11 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Constant *StartCST =
dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
if (StartCST == 0) return CouldNotCompute; // Must be a constant.
if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
// Okay, we find a PHI node that defines the trip count of this loop. Execute
// the loop symbolically to determine when the condition gets a value of
@ -3402,7 +3520,7 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
// Couldn't symbolically evaluate.
if (!CondVal) return CouldNotCompute;
if (!CondVal) return getCouldNotCompute();
if (CondVal->getValue() == uint64_t(ExitWhen)) {
ConstantEvolutionLoopExitValue[PN] = PHIVal;
@ -3413,12 +3531,12 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
// Compute the value of the PHI node for the next iteration.
Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
if (NextPHI == 0 || NextPHI == PHIVal)
return CouldNotCompute; // Couldn't evaluate or not making progress...
return getCouldNotCompute();// Couldn't evaluate or not making progress...
PHIVal = NextPHI;
}
// Too many iterations were needed to evaluate.
return CouldNotCompute;
return getCouldNotCompute();
}
/// getSCEVAtScope - Return a SCEV expression handle for the specified value
@ -3574,7 +3692,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
if (BackedgeTakenCount == CouldNotCompute) return AddRec;
if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
// Then, evaluate the AddRec.
return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
@ -3729,12 +3847,12 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
if (C->getValue()->isZero()) return C;
return CouldNotCompute; // Otherwise it will loop infinitely.
return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
if (!AddRec || AddRec->getLoop() != L)
return CouldNotCompute;
return getCouldNotCompute();
if (AddRec->isAffine()) {
// If this is an affine expression, the execution count of this branch is
@ -3798,7 +3916,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
}
}
return CouldNotCompute;
return getCouldNotCompute();
}
/// HowFarToNonZero - Return the number of times a backedge checking the
@ -3814,12 +3932,12 @@ const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
if (!C->getValue()->isNullValue())
return getIntegerSCEV(0, C->getType());
return CouldNotCompute; // Otherwise it will loop infinitely.
return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
// We could implement others, but I really doubt anyone writes loops like
// this, and if they did, they would already be constant folded.
return CouldNotCompute;
return getCouldNotCompute();
}
/// getLoopPredecessor - If the given loop's header has exactly one unique
@ -4037,7 +4155,7 @@ const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
getAddExpr(getZeroExtendExpr(Diff, WideTy),
getZeroExtendExpr(RoundUp, WideTy));
if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
return CouldNotCompute;
return getCouldNotCompute();
return getUDivExpr(Add, Step);
}
@ -4049,11 +4167,11 @@ ScalarEvolution::BackedgeTakenInfo
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool isSigned) {
// Only handle: "ADDREC < LoopInvariant".
if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
if (!AddRec || AddRec->getLoop() != L)
return CouldNotCompute;
return getCouldNotCompute();
if (AddRec->isAffine()) {
// FORNOW: We only support unit strides.
@ -4063,7 +4181,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
// TODO: handle non-constant strides.
const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
if (!CStep || CStep->isZero())
return CouldNotCompute;
return getCouldNotCompute();
if (CStep->isOne()) {
// With unit stride, the iteration never steps past the limit value.
} else if (CStep->getValue()->getValue().isStrictlyPositive()) {
@ -4074,19 +4192,19 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
APInt Max = APInt::getSignedMaxValue(BitWidth);
if ((Max - CStep->getValue()->getValue())
.slt(CLimit->getValue()->getValue()))
return CouldNotCompute;
return getCouldNotCompute();
} else {
APInt Max = APInt::getMaxValue(BitWidth);
if ((Max - CStep->getValue()->getValue())
.ult(CLimit->getValue()->getValue()))
return CouldNotCompute;
return getCouldNotCompute();
}
} else
// TODO: handle non-constant limit values below.
return CouldNotCompute;
return getCouldNotCompute();
} else
// TODO: handle negative strides below.
return CouldNotCompute;
return getCouldNotCompute();
// We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
// m. So, we count the number of iterations in which {n,+,s} < m is true.
@ -4131,7 +4249,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
return BackedgeTakenInfo(BECount, MaxBECount);
}
return CouldNotCompute;
return getCouldNotCompute();
}
/// getNumIterationsInRange - Return the number of iterations of this loop that
@ -4319,7 +4437,7 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
//===----------------------------------------------------------------------===//
ScalarEvolution::ScalarEvolution()
: FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
: FunctionPass(&ID) {
}
bool ScalarEvolution::runOnFunction(Function &F) {
@ -4334,45 +4452,8 @@ void ScalarEvolution::releaseMemory() {
BackedgeTakenCounts.clear();
ConstantEvolutionLoopExitValue.clear();
ValuesAtScopes.clear();
for (std::map<ConstantInt*, SCEVConstant*>::iterator
I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<const SCEV*, const Type*>,
SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
E = SCEVTruncates.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<const SCEV*, const Type*>,
SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
E = SCEVZeroExtends.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
E = SCEVCommExprs.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<const SCEV*, const Type*>,
SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(),
E = SCEVSignExtends.end(); I != E; ++I)
delete I->second;
for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
E = SCEVAddRecExprs.end(); I != E; ++I)
delete I->second;
for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
E = SCEVUnknowns.end(); I != E; ++I)
delete I->second;
SCEVConstants.clear();
SCEVTruncates.clear();
SCEVZeroExtends.clear();
SCEVCommExprs.clear();
SCEVUDivs.clear();
SCEVSignExtends.clear();
SCEVAddRecExprs.clear();
SCEVUnknowns.clear();
UniqueSCEVs.clear();
SCEVAllocator.Reset();
}
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {