mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-11-02 22:23:10 +00:00
Remove ETForest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37765 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -9,9 +9,7 @@
|
||||
//
|
||||
// This file defines the following classes:
|
||||
// 1. DominatorTree: Represent dominators as an explicit tree structure.
|
||||
// 2. ETForest: Efficient data structure for dominance comparisons and
|
||||
// nearest-common-ancestor queries.
|
||||
// 3. DominanceFrontier: Calculate and hold the dominance frontier for a
|
||||
// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
|
||||
// function.
|
||||
//
|
||||
// These data structures are listed in increasing order of complexity. It
|
||||
@@ -23,7 +21,6 @@
|
||||
#ifndef LLVM_ANALYSIS_DOMINATORS_H
|
||||
#define LLVM_ANALYSIS_DOMINATORS_H
|
||||
|
||||
#include "llvm/Analysis/ET-Forest.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include <set>
|
||||
|
||||
@@ -347,170 +344,6 @@ template <> struct GraphTraits<DominatorTree*>
|
||||
};
|
||||
|
||||
|
||||
//===-------------------------------------
|
||||
/// ET-Forest Class - Class used to construct forwards and backwards
|
||||
/// ET-Forests
|
||||
///
|
||||
class ETForestBase : public DominatorBase {
|
||||
public:
|
||||
ETForestBase(intptr_t ID, bool isPostDom)
|
||||
: DominatorBase(ID, isPostDom), Nodes(),
|
||||
DFSInfoValid(false), SlowQueries(0) {}
|
||||
|
||||
virtual void releaseMemory() { reset(); }
|
||||
|
||||
typedef std::map<BasicBlock*, ETNode*> ETMapType;
|
||||
|
||||
// FIXME : There is no need to make this interface public.
|
||||
// Fix predicate simplifier.
|
||||
void updateDFSNumbers();
|
||||
|
||||
/// dominates - Return true if A dominates B.
|
||||
///
|
||||
inline bool dominates(BasicBlock *A, BasicBlock *B) {
|
||||
if (A == B)
|
||||
return true;
|
||||
|
||||
ETNode *NodeA = getNode(A);
|
||||
ETNode *NodeB = getNode(B);
|
||||
|
||||
if (DFSInfoValid)
|
||||
return NodeB->DominatedBy(NodeA);
|
||||
else {
|
||||
// If we end up with too many slow queries, just update the
|
||||
// DFS numbers on the theory that we are going to keep querying.
|
||||
SlowQueries++;
|
||||
if (SlowQueries > 32) {
|
||||
updateDFSNumbers();
|
||||
return NodeB->DominatedBy(NodeA);
|
||||
}
|
||||
return NodeB->DominatedBySlow(NodeA);
|
||||
}
|
||||
}
|
||||
|
||||
// dominates - Return true if A dominates B. This performs the
|
||||
// special checks necessary if A and B are in the same basic block.
|
||||
bool dominates(Instruction *A, Instruction *B);
|
||||
|
||||
/// properlyDominates - Return true if A dominates B and A != B.
|
||||
///
|
||||
bool properlyDominates(BasicBlock *A, BasicBlock *B) {
|
||||
return dominates(A, B) && A != B;
|
||||
}
|
||||
|
||||
/// isReachableFromEntry - Return true if A is dominated by the entry
|
||||
/// block of the function containing it.
|
||||
const bool isReachableFromEntry(BasicBlock* A);
|
||||
|
||||
/// Return the nearest common dominator of A and B.
|
||||
BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
ETNode *NodeB = getNode(B);
|
||||
|
||||
ETNode *Common = NodeA->NCA(NodeB);
|
||||
if (!Common)
|
||||
return NULL;
|
||||
return Common->getData<BasicBlock>();
|
||||
}
|
||||
|
||||
/// Return the immediate dominator of A.
|
||||
BasicBlock *getIDom(BasicBlock *A) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
if (!NodeA) return 0;
|
||||
const ETNode *idom = NodeA->getFather();
|
||||
return idom ? idom->getData<BasicBlock>() : 0;
|
||||
}
|
||||
|
||||
void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
if (!NodeA) return;
|
||||
const ETNode* son = NodeA->getSon();
|
||||
|
||||
if (!son) return;
|
||||
children.push_back(son->getData<BasicBlock>());
|
||||
|
||||
const ETNode* brother = son->getBrother();
|
||||
while (brother != son) {
|
||||
children.push_back(brother->getData<BasicBlock>());
|
||||
brother = brother->getBrother();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<DominatorTree>();
|
||||
}
|
||||
//===--------------------------------------------------------------------===//
|
||||
// API to update Forest information based on modifications
|
||||
// to the CFG...
|
||||
|
||||
/// addNewBlock - Add a new block to the CFG, with the specified immediate
|
||||
/// dominator.
|
||||
///
|
||||
void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
|
||||
|
||||
/// setImmediateDominator - Update the immediate dominator information to
|
||||
/// change the current immediate dominator for the specified block
|
||||
/// to another block. This method requires that BB for NewIDom
|
||||
/// already have an ETNode, otherwise just use addNewBlock.
|
||||
///
|
||||
void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
|
||||
/// print - Convert to human readable form
|
||||
///
|
||||
virtual void print(std::ostream &OS, const Module* = 0) const;
|
||||
void print(std::ostream *OS, const Module* M = 0) const {
|
||||
if (OS) print(*OS, M);
|
||||
}
|
||||
virtual void dump();
|
||||
protected:
|
||||
/// getNode - return the (Post)DominatorTree node for the specified basic
|
||||
/// block. This is the same as using operator[] on this class.
|
||||
///
|
||||
inline ETNode *getNode(BasicBlock *BB) const {
|
||||
ETMapType::const_iterator i = Nodes.find(BB);
|
||||
return (i != Nodes.end()) ? i->second : 0;
|
||||
}
|
||||
|
||||
inline ETNode *operator[](BasicBlock *BB) const {
|
||||
return getNode(BB);
|
||||
}
|
||||
|
||||
void reset();
|
||||
ETMapType Nodes;
|
||||
bool DFSInfoValid;
|
||||
unsigned int SlowQueries;
|
||||
|
||||
};
|
||||
|
||||
//==-------------------------------------
|
||||
/// ETForest Class - Concrete subclass of ETForestBase that is used to
|
||||
/// compute a forwards ET-Forest.
|
||||
|
||||
class ETForest : public ETForestBase {
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
|
||||
ETForest() : ETForestBase((intptr_t)&ID, false) {}
|
||||
|
||||
BasicBlock *getRoot() const {
|
||||
assert(Roots.size() == 1 && "Should always have entry node!");
|
||||
return Roots[0];
|
||||
}
|
||||
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
reset(); // Reset from the last time we were run...
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
Roots = DT.getRoots();
|
||||
calculate(DT);
|
||||
return false;
|
||||
}
|
||||
|
||||
void calculate(const DominatorTree &DT);
|
||||
// FIXME : There is no need to make getNodeForBlock public. Fix
|
||||
// predicate simplifier.
|
||||
ETNode *getNodeForBlock(BasicBlock *BB);
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DominanceFrontierBase - Common base class for computing forward and inverse
|
||||
/// dominance frontiers for a function.
|
||||
|
||||
@@ -1,312 +0,0 @@
|
||||
//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was written by Daniel Berlin from code written by Pavel Nejedy, and
|
||||
// is distributed under the University of Illinois Open Source License. See
|
||||
// LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the following classes:
|
||||
// 1. ETNode: A node in the ET forest.
|
||||
// 2. ETOccurrence: An occurrence of the node in the splay tree
|
||||
// storing the DFS path information.
|
||||
//
|
||||
// The ET-forest structure is described in:
|
||||
// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
|
||||
// J. G'omput. System Sci., 26(3):362 381, 1983.
|
||||
//
|
||||
// Basically, the ET-Forest is storing the dominator tree (ETNode),
|
||||
// and a splay tree containing the depth first path information for
|
||||
// those nodes (ETOccurrence). This enables us to answer queries
|
||||
// about domination (DominatedBySlow), and ancestry (NCA) in
|
||||
// logarithmic time, and perform updates to the information in
|
||||
// logarithmic time.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_ETFOREST_H
|
||||
#define LLVM_ANALYSIS_ETFOREST_H
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
|
||||
namespace llvm {
|
||||
class ETNode;
|
||||
|
||||
/// ETOccurrence - An occurrence for a node in the et tree
|
||||
///
|
||||
/// The et occurrence tree is really storing the sequences you get from
|
||||
/// doing a DFS over the ETNode's. It is stored as a modified splay
|
||||
/// tree.
|
||||
/// ET occurrences can occur at multiple places in the ordering depending
|
||||
/// on how many ET nodes have it as their father. To handle
|
||||
/// this, they are separate from the nodes.
|
||||
///
|
||||
class ETOccurrence {
|
||||
public:
|
||||
ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL),
|
||||
Depth(0), Min(0), MinOccurrence(this) {};
|
||||
|
||||
void setParent(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set parent to ourselves");
|
||||
Parent = n;
|
||||
}
|
||||
|
||||
// Add D to our current depth
|
||||
void setDepthAdd(int d) {
|
||||
Min += d;
|
||||
Depth += d;
|
||||
}
|
||||
|
||||
// Reset our depth to D
|
||||
void setDepth(int d) {
|
||||
Min += d - Depth;
|
||||
Depth = d;
|
||||
}
|
||||
|
||||
// Set Left to N
|
||||
void setLeft(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set our left to ourselves");
|
||||
Left = n;
|
||||
if (n)
|
||||
n->setParent(this);
|
||||
}
|
||||
|
||||
// Set Right to N
|
||||
void setRight(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set our right to ourselves");
|
||||
Right = n;
|
||||
if (n)
|
||||
n->setParent(this);
|
||||
}
|
||||
|
||||
// Splay us to the root of the tree
|
||||
void Splay(void);
|
||||
|
||||
// Recompute the minimum occurrence for this occurrence.
|
||||
void recomputeMin(void) {
|
||||
ETOccurrence *themin = Left;
|
||||
|
||||
// The min may be our Right, too.
|
||||
if (!themin || (Right && themin->Min > Right->Min))
|
||||
themin = Right;
|
||||
|
||||
if (themin && themin->Min < 0) {
|
||||
Min = themin->Min + Depth;
|
||||
MinOccurrence = themin->MinOccurrence;
|
||||
} else {
|
||||
Min = Depth;
|
||||
MinOccurrence = this;
|
||||
}
|
||||
}
|
||||
private:
|
||||
friend class ETNode;
|
||||
|
||||
// Node we represent
|
||||
ETNode *OccFor;
|
||||
|
||||
// Parent in the splay tree
|
||||
ETOccurrence *Parent;
|
||||
|
||||
// Left Son in the splay tree
|
||||
ETOccurrence *Left;
|
||||
|
||||
// Right Son in the splay tree
|
||||
ETOccurrence *Right;
|
||||
|
||||
// Depth of the node is the sum of the depth on the path to the
|
||||
// root.
|
||||
int Depth;
|
||||
|
||||
// Subtree occurrence's minimum depth
|
||||
int Min;
|
||||
|
||||
// Subtree occurrence with minimum depth
|
||||
ETOccurrence *MinOccurrence;
|
||||
};
|
||||
|
||||
|
||||
class ETNode {
|
||||
public:
|
||||
ETNode(void *d) : data(d), DFSNumIn(-1), DFSNumOut(-1),
|
||||
Father(NULL), Left(NULL),
|
||||
Right(NULL), Son(NULL), ParentOcc(NULL) {
|
||||
RightmostOcc = new ETOccurrence(this);
|
||||
};
|
||||
|
||||
// This does *not* maintain the tree structure.
|
||||
// If you want to remove a node from the forest structure, use
|
||||
// removeFromForest()
|
||||
~ETNode() {
|
||||
delete RightmostOcc;
|
||||
delete ParentOcc;
|
||||
}
|
||||
|
||||
void removeFromForest() {
|
||||
// Split us away from all our sons.
|
||||
while (Son)
|
||||
Son->Split();
|
||||
|
||||
// And then split us away from our father.
|
||||
if (Father)
|
||||
Father->Split();
|
||||
}
|
||||
|
||||
// Split us away from our parents and children, so that we can be
|
||||
// reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT
|
||||
// SPLIT US FIRST.
|
||||
void Split();
|
||||
|
||||
// Set our parent node to the passed in node
|
||||
void setFather(ETNode *);
|
||||
|
||||
// Nearest Common Ancestor of two et nodes.
|
||||
ETNode *NCA(ETNode *);
|
||||
|
||||
// Return true if we are below the passed in node in the forest.
|
||||
bool Below(ETNode *);
|
||||
/*
|
||||
Given a dominator tree, we can determine whether one thing
|
||||
dominates another in constant time by using two DFS numbers:
|
||||
|
||||
1. The number for when we visit a node on the way down the tree
|
||||
2. The number for when we visit a node on the way back up the tree
|
||||
|
||||
You can view these as bounds for the range of dfs numbers the
|
||||
nodes in the subtree of the dominator tree rooted at that node
|
||||
will contain.
|
||||
|
||||
The dominator tree is always a simple acyclic tree, so there are
|
||||
only three possible relations two nodes in the dominator tree have
|
||||
to each other:
|
||||
|
||||
1. Node A is above Node B (and thus, Node A dominates node B)
|
||||
|
||||
A
|
||||
|
|
||||
C
|
||||
/ \
|
||||
B D
|
||||
|
||||
|
||||
In the above case, DFS_Number_In of A will be <= DFS_Number_In of
|
||||
B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
|
||||
because we must hit A in the dominator tree *before* B on the walk
|
||||
down, and we will hit A *after* B on the walk back up
|
||||
|
||||
2. Node A is below node B (and thus, node B dominates node B)
|
||||
|
||||
B
|
||||
|
|
||||
A
|
||||
/ \
|
||||
C D
|
||||
|
||||
In the above case, DFS_Number_In of A will be >= DFS_Number_In of
|
||||
B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
|
||||
|
||||
This is because we must hit A in the dominator tree *after* B on
|
||||
the walk down, and we will hit A *before* B on the walk back up
|
||||
|
||||
3. Node A and B are siblings (and thus, neither dominates the other)
|
||||
|
||||
C
|
||||
|
|
||||
D
|
||||
/ \
|
||||
A B
|
||||
|
||||
In the above case, DFS_Number_In of A will *always* be <=
|
||||
DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
|
||||
DFS_Number_Out of B. This is because we will always finish the dfs
|
||||
walk of one of the subtrees before the other, and thus, the dfs
|
||||
numbers for one subtree can't intersect with the range of dfs
|
||||
numbers for the other subtree. If you swap A and B's position in
|
||||
the dominator tree, the comparison changes direction, but the point
|
||||
is that both comparisons will always go the same way if there is no
|
||||
dominance relationship.
|
||||
|
||||
Thus, it is sufficient to write
|
||||
|
||||
A_Dominates_B(node A, node B) {
|
||||
return DFS_Number_In(A) <= DFS_Number_In(B) &&
|
||||
DFS_Number_Out(A) >= DFS_Number_Out(B);
|
||||
}
|
||||
|
||||
A_Dominated_by_B(node A, node B) {
|
||||
return DFS_Number_In(A) >= DFS_Number_In(A) &&
|
||||
DFS_Number_Out(A) <= DFS_Number_Out(B);
|
||||
}
|
||||
*/
|
||||
bool DominatedBy(ETNode *other) const {
|
||||
return this->DFSNumIn >= other->DFSNumIn &&
|
||||
this->DFSNumOut <= other->DFSNumOut;
|
||||
}
|
||||
|
||||
// This method is slower, but doesn't require the DFS numbers to
|
||||
// be up to date.
|
||||
bool DominatedBySlow(ETNode *other) {
|
||||
return this->Below(other);
|
||||
}
|
||||
|
||||
void assignDFSNumber (int);
|
||||
|
||||
bool hasFather() const {
|
||||
return Father != NULL;
|
||||
}
|
||||
|
||||
// Do not let people play around with fathers.
|
||||
const ETNode *getFather() const {
|
||||
return Father;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T *getData() const {
|
||||
return static_cast<T*>(data);
|
||||
}
|
||||
|
||||
unsigned getDFSNumIn() const {
|
||||
return DFSNumIn;
|
||||
}
|
||||
|
||||
unsigned getDFSNumOut() const {
|
||||
return DFSNumOut;
|
||||
}
|
||||
|
||||
const ETNode *getSon() const {
|
||||
return Son;
|
||||
}
|
||||
|
||||
const ETNode *getBrother() const {
|
||||
return Left;
|
||||
}
|
||||
|
||||
private:
|
||||
// Data represented by the node
|
||||
void *data;
|
||||
|
||||
// DFS Numbers
|
||||
int DFSNumIn, DFSNumOut;
|
||||
|
||||
// Father
|
||||
ETNode *Father;
|
||||
|
||||
// Brothers. Node, this ends up being a circularly linked list.
|
||||
// Thus, if you want to get all the brothers, you need to stop when
|
||||
// you hit node == this again.
|
||||
ETNode *Left, *Right;
|
||||
|
||||
// First Son
|
||||
ETNode *Son;
|
||||
|
||||
// Rightmost occurrence for this node
|
||||
ETOccurrence *RightmostOcc;
|
||||
|
||||
// Parent occurrence for this node
|
||||
ETOccurrence *ParentOcc;
|
||||
};
|
||||
} // end llvm namespace
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user