Remap frame variables for native Windows exception handling.

Differential Revision: http://reviews.llvm.org/D7770



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230249 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Kaylor 2015-02-23 20:01:56 +00:00
parent ee7b509aa3
commit 1d10231766
5 changed files with 858 additions and 577 deletions

View File

@ -153,6 +153,9 @@ public:
virtual CloningAction handleInstruction(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) = 0;
virtual ValueMapTypeRemapper *getTypeRemapper() { return nullptr; }
virtual ValueMaterializer *getValueMaterializer() { return nullptr; }
};
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,

View File

@ -15,6 +15,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
@ -33,6 +35,19 @@ using namespace llvm::PatternMatch;
#define DEBUG_TYPE "winehprepare"
namespace {
struct HandlerAllocas {
TinyPtrVector<AllocaInst *> Allocas;
int ParentFrameAllocationIndex;
};
// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
typedef MapVector<AllocaInst *, HandlerAllocas> FrameVarInfoMap;
class WinEHPrepare : public FunctionPass {
std::unique_ptr<FunctionPass> DwarfPrepare;
@ -55,13 +70,30 @@ private:
bool prepareCPPEHHandlers(Function &F,
SmallVectorImpl<LandingPadInst *> &LPads);
bool outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
LandingPadInst *LPad, StructType *EHDataStructTy);
LandingPadInst *LPad, CallInst *&EHAlloc,
AllocaInst *&EHObjPtr, FrameVarInfoMap &VarInfo);
};
class WinEHFrameVariableMaterializer : public ValueMaterializer {
public:
WinEHFrameVariableMaterializer(Function *OutlinedFn,
FrameVarInfoMap &FrameVarInfo);
~WinEHFrameVariableMaterializer() {}
virtual Value *materializeValueFor(Value *V) override;
private:
Function *OutlinedFn;
FrameVarInfoMap &FrameVarInfo;
IRBuilder<> Builder;
};
class WinEHCatchDirector : public CloningDirector {
public:
WinEHCatchDirector(LandingPadInst *LPI, Value *Selector, Value *EHObj)
WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
Value *EHObj, FrameVarInfoMap &VarInfo)
: LPI(LPI), CurrentSelector(Selector->stripPointerCasts()), EHObj(EHObj),
Materializer(CatchFn, VarInfo),
SelectorIDType(Type::getInt32Ty(LPI->getContext())),
Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}
@ -69,10 +101,13 @@ public:
const Instruction *Inst,
BasicBlock *NewBB) override;
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
private:
LandingPadInst *LPI;
Value *CurrentSelector;
Value *EHObj;
WinEHFrameVariableMaterializer Materializer;
Type *SelectorIDType;
Type *Int8PtrType;
@ -145,14 +180,13 @@ void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
bool WinEHPrepare::prepareCPPEHHandlers(
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
// FIXME: Find all frame variable references in the handlers
// to populate the structure elements.
SmallVector<Type *, 2> AllocStructTys;
AllocStructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
AllocStructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
StructType *EHDataStructTy =
StructType::create(F.getContext(), AllocStructTys,
"struct." + F.getName().str() + ".ehdata");
// These containers are used to re-map frame variables that are used in
// outlined catch and cleanup handlers. They will be populated as the
// handlers are outlined.
FrameVarInfoMap FrameVarInfo;
SmallVector<CallInst *, 4> HandlerAllocs;
SmallVector<AllocaInst *, 4> HandlerEHObjPtrs;
bool HandlersOutlined = false;
for (LandingPadInst *LPad : LPads) {
@ -175,18 +209,174 @@ bool WinEHPrepare::prepareCPPEHHandlers(
for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
++Idx) {
if (LPad->isCatch(Idx))
HandlersOutlined =
outlineCatchHandler(&F, LPad->getClause(Idx), LPad, EHDataStructTy);
} // End for each clause
} // End for each landingpad
if (LPad->isCatch(Idx)) {
// Create a new instance of the handler data structure in the
// HandlerData vector.
CallInst *EHAlloc = nullptr;
AllocaInst *EHObjPtr = nullptr;
bool Outlined = outlineCatchHandler(&F, LPad->getClause(Idx), LPad,
EHAlloc, EHObjPtr, FrameVarInfo);
if (Outlined) {
HandlersOutlined = true;
// These values must be resolved after all handlers have been
// outlined.
if (EHAlloc)
HandlerAllocs.push_back(EHAlloc);
if (EHObjPtr)
HandlerEHObjPtrs.push_back(EHObjPtr);
}
} // End if (isCatch)
} // End for each clause
} // End for each landingpad
// If nothing got outlined, there is no more processing to be done.
if (!HandlersOutlined)
return false;
// FIXME: We will replace the landingpad bodies with llvm.eh.actions
// calls and indirect branches here and then delete blocks
// which are no longer reachable. That will get rid of the
// handlers that we have outlined. There is code below
// that looks for allocas with no uses in the parent function.
// That will only happen after the pruning is implemented.
// Remap the frame variables.
SmallVector<Type *, 2> StructTys;
StructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
// Start the index at two since we always have the above fields at 0 and 1.
int Idx = 2;
// FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
// and add padding as necessary to provide the proper alignment.
// Map the alloca instructions to the corresponding index in the
// frame allocation structure. If any alloca is used only in a single
// handler and is not used in the parent frame after outlining, it will
// be assigned an index of -1, meaning the handler can keep its
// "temporary" alloca and the original alloca can be erased from the
// parent function. If we later encounter this alloca in a second
// handler, we will assign it a place in the frame allocation structure
// at that time. Since the instruction replacement doesn't happen until
// all the entries in the HandlerData have been processed this isn't a
// problem.
for (auto &VarInfoEntry : FrameVarInfo) {
AllocaInst *ParentAlloca = VarInfoEntry.first;
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
// If the instruction still has uses in the parent function or if it is
// referenced by more than one handler, add it to the frame allocation
// structure.
if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
Type *VarTy = ParentAlloca->getAllocatedType();
StructTys.push_back(VarTy);
AllocaInfo.ParentFrameAllocationIndex = Idx++;
} else {
// If the variable is not used in the parent frame and it is only used
// in one handler, the alloca can be removed from the parent frame
// and the handler will keep its "temporary" alloca to define the value.
// An element index of -1 is used to indicate this condition.
AllocaInfo.ParentFrameAllocationIndex = -1;
}
}
// Having filled the StructTys vector and assigned an index to each element,
// we can now create the structure.
StructType *EHDataStructTy = StructType::create(
F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
IRBuilder<> Builder(F.getParent()->getContext());
// Create a frame allocation.
Module *M = F.getParent();
LLVMContext &Context = M->getContext();
BasicBlock *Entry = &F.getEntryBlock();
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
Function *FrameAllocFn =
Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
uint64_t EHAllocSize = M->getDataLayout()->getTypeAllocSize(EHDataStructTy);
Value *FrameAllocArgs[] = {
ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
CallInst *FrameAlloc =
Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");
Value *FrameEHData = Builder.CreateBitCast(
FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");
// Now visit each handler that is using the structure and bitcast its EHAlloc
// value to be a pointer to the frame alloc structure.
DenseMap<Function *, Value *> EHDataMap;
for (CallInst *EHAlloc : HandlerAllocs) {
// The EHAlloc has no uses at this time, so we need to just insert the
// cast before the next instruction. There is always a next instruction.
BasicBlock::iterator II = EHAlloc;
++II;
Builder.SetInsertPoint(cast<Instruction>(II));
Value *EHData = Builder.CreateBitCast(
EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
}
// Next, replace the place-holder EHObjPtr allocas with GEP instructions
// that pull the EHObjPtr from the frame alloc structure
for (AllocaInst *EHObjPtr : HandlerEHObjPtrs) {
Value *EHData = EHDataMap[EHObjPtr->getParent()->getParent()];
Value *ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1);
EHObjPtr->replaceAllUsesWith(ElementPtr);
EHObjPtr->removeFromParent();
ElementPtr->takeName(EHObjPtr);
delete EHObjPtr;
}
// Finally, replace all of the temporary allocas for frame variables used in
// the outlined handlers and the original frame allocas with GEP instructions
// that get the equivalent pointer from the frame allocation struct.
for (auto &VarInfoEntry : FrameVarInfo) {
AllocaInst *ParentAlloca = VarInfoEntry.first;
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
int Idx = AllocaInfo.ParentFrameAllocationIndex;
// If we have an index of -1 for this instruction, it means it isn't used
// outside of this handler. In that case, we just keep the "temporary"
// alloca in the handler and erase the original alloca from the parent.
if (Idx == -1) {
ParentAlloca->eraseFromParent();
} else {
// Otherwise, we replace the parent alloca and all outlined allocas
// which map to it with GEP instructions.
// First replace the original alloca.
Builder.SetInsertPoint(ParentAlloca);
Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
Value *ElementPtr =
Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
ParentAlloca->replaceAllUsesWith(ElementPtr);
ParentAlloca->removeFromParent();
ElementPtr->takeName(ParentAlloca);
delete ParentAlloca;
// Next replace all outlined allocas that are mapped to it.
for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
// FIXME: Sink this GEP into the blocks where it is used.
Builder.SetInsertPoint(TempAlloca);
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
TempAlloca->replaceAllUsesWith(ElementPtr);
TempAlloca->removeFromParent();
ElementPtr->takeName(TempAlloca);
delete TempAlloca;
}
} // end else of if (Idx == -1)
} // End for each FrameVarInfo entry.
return HandlersOutlined;
}
bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
LandingPadInst *LPad,
StructType *EHDataStructTy) {
LandingPadInst *LPad, CallInst *&EHAlloc,
AllocaInst *&EHObjPtr,
FrameVarInfoMap &VarInfo) {
Module *M = SrcFn->getParent();
LLVMContext &Context = M->getContext();
@ -221,12 +411,11 @@ bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
&(CatchHandler->getArgumentList().back())};
CallInst *EHAlloc =
Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
Value *EHData =
Builder.CreateBitCast(EHAlloc, EHDataStructTy->getPointerTo(), "ehdata");
Value *EHObjPtr =
Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1, "eh.obj.ptr");
EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
// This alloca is only temporary. We'll be replacing it once we know all the
// frame variables that need to go in the frame allocation structure.
EHObjPtr = Builder.CreateAlloca(Int8PtrType, 0, "eh.obj.ptr");
// This will give us a raw pointer to the exception object, which
// corresponds to the formal parameter of the catch statement. If the
@ -240,7 +429,7 @@ bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
// FIXME: Map other values referenced in the filter handler.
WinEHCatchDirector Director(LPad, SelectorType, EHObj);
WinEHCatchDirector Director(LPad, CatchHandler, SelectorType, EHObj, VarInfo);
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
@ -271,9 +460,11 @@ CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
"Unexpected operation: extracting an unknown landing pad element");
if (*(Extract->idx_begin()) == 0) {
// Element 0 doesn't directly corresponds to anything in the WinEH scheme.
// Element 0 doesn't directly corresponds to anything in the WinEH
// scheme.
// It will be stored to a memory location, then later loaded and finally
// the loaded value will be used as the argument to an llvm.eh.begincatch
// the loaded value will be used as the argument to an
// llvm.eh.begincatch
// call. We're tracking it here so that we can skip the store and load.
ExtractedEHPtr = Inst;
} else {
@ -362,10 +553,10 @@ CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
assert(Branch && Branch->isUnconditional());
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
BasicBlock::const_iterator(Branch));
BasicBlock::const_iterator(Branch));
ReturnInst::Create(NewBB->getContext(),
BlockAddress::get(Branch->getSuccessor(0)), NewBB);
BlockAddress::get(Branch->getSuccessor(0)), NewBB);
// We just added a terminator to the cloned block.
// Tell the caller to stop processing the current basic block so that
@ -388,3 +579,49 @@ CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
// Continue with the default cloning behavior.
return CloningDirector::CloneInstruction;
}
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
: OutlinedFn(OutlinedFn), FrameVarInfo(FrameVarInfo),
Builder(OutlinedFn->getContext()) {
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
// FIXME: Do something with the FrameVarMapped so that it is shared across the
// function.
}
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
// If we're asked to materialize an alloca variable, we temporarily
// create a matching alloca in the outlined function. When all the
// outlining is complete, we'll collect these into a structure and
// replace these temporary allocas with GEPs referencing the frame
// allocation block.
if (auto *AV = dyn_cast<AllocaInst>(V)) {
AllocaInst *NewAlloca = Builder.CreateAlloca(
AV->getAllocatedType(), AV->getArraySize(), AV->getName());
FrameVarInfo[AV].Allocas.push_back(NewAlloca);
return NewAlloca;
}
// FIXME: Do PHI nodes need special handling?
// FIXME: Are there other cases we can handle better? GEP, ExtractValue, etc.
// FIXME: This doesn't work during cloning because it finds an instruction
// in the use list that isn't yet part of a basic block.
#if 0
// If we're asked to remap some other instruction, we'll need to
// spill it to an alloca variable in the parent function and add a
// temporary alloca in the outlined function to be processed as
// described above.
Instruction *Inst = dyn_cast<Instruction>(V);
if (Inst) {
AllocaInst *Spill = DemoteRegToStack(*Inst, true);
AllocaInst *NewAlloca = Builder.CreateAlloca(Spill->getAllocatedType(),
Spill->getArraySize());
FrameVarMap[AV] = NewAlloca;
return NewAlloca;
}
#endif
return nullptr;
}

View File

@ -261,6 +261,8 @@ namespace {
ClonedCodeInfo *CodeInfo;
const DataLayout *DL;
CloningDirector *Director;
ValueMapTypeRemapper *TypeMapper;
ValueMaterializer *Materializer;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
@ -274,6 +276,14 @@ namespace {
VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL),
Director(Director) {
// These are optional components. The Director may return null.
if (Director) {
TypeMapper = Director->getTypeRemapper();
Materializer = Director->getValueMaterializer();
} else {
TypeMapper = nullptr;
Materializer = nullptr;
}
}
/// CloneBlock - The specified block is found to be reachable, clone it and
@ -344,7 +354,8 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// nodes for which we defer processing until we update the CFG.
if (!isa<PHINode>(NewInst)) {
RemapInstruction(NewInst, VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer);
// If we can simplify this instruction to some other value, simply add
// a mapping to that value rather than inserting a new instruction into
@ -459,6 +470,14 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
CloningDirector *Director) {
assert(NameSuffix && "NameSuffix cannot be null!");
ValueMapTypeRemapper *TypeMapper = nullptr;
ValueMaterializer *Materializer = nullptr;
if (Director) {
TypeMapper = Director->getTypeRemapper();
Materializer = Director->getValueMaterializer();
}
#ifndef NDEBUG
// If the cloning starts at the begining of the function, verify that
// the function arguments are mapped.
@ -513,7 +532,8 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
// Finally, remap the terminator instructions, as those can't be remapped
// until all BBs are mapped.
RemapInstruction(NewBB->getTerminator(), VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer);
}
// Defer PHI resolution until rest of function is resolved, PHI resolution

View File

@ -55,8 +55,8 @@ try.cont: ; preds = %invoke.cont2, %invo
; CHECK: define i8* @_Z4testv.catch(i8*, i8*) {
; CHECK: catch.entry:
; CHECK: %eh.alloc = call i8* @llvm.framerecover(i8* bitcast (void ()* @_Z4testv to i8*), i8* %1)
; CHECK: %ehdata = bitcast i8* %eh.alloc to %struct._Z4testv.ehdata*
; CHECK: %eh.obj.ptr = getelementptr inbounds %struct._Z4testv.ehdata* %ehdata, i32 0, i32 1
; CHECK: %eh.data = bitcast i8* %eh.alloc to %struct._Z4testv.ehdata*
; CHECK: %eh.obj.ptr = getelementptr inbounds %struct._Z4testv.ehdata* %eh.data, i32 0, i32 1
; CHECK: %eh.obj = load i8** %eh.obj.ptr
; CHECK: call void @_Z16handle_exceptionv()
; CHECK: ret i8* blockaddress(@_Z4testv, %try.cont)

View File

@ -6,8 +6,8 @@
; {
; try {
; may_throw();
; } catch (int) {
; handle_int();
; } catch (int i) {
; handle_int(i);
; }
; }
;
@ -18,13 +18,27 @@
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc"
; This is the structure that will get created for the frame allocation.
; CHECK: %struct._Z4testv.ehdata = type { i32, i8*, i32 }
@_ZTIi = external constant i8*
; The function entry will be rewritten like this.
; CHECK: define void @_Z4testv() #0 {
; CHECK: entry:
; CHECK: %frame.alloc = call i8* @llvm.frameallocate(i32 24)
; CHECK: %eh.data = bitcast i8* %frame.alloc to %struct._Z4testv.ehdata*
; CHECK: %exn.slot = alloca i8*
; CHECK: %ehselector.slot = alloca i32
; CHECK-NOT: %i = alloca i32, align 4
; CHECK: %i = getelementptr inbounds %struct._Z4testv.ehdata* %eh.data, i32 0, i32 2
; Function Attrs: uwtable
define void @_Z4testv() #0 {
entry:
%exn.slot = alloca i8*
%ehselector.slot = alloca i32
%i = alloca i32, align 4
invoke void @_Z9may_throwv()
to label %invoke.cont unwind label %lpad
@ -50,7 +64,10 @@ catch: ; preds = %catch.dispatch
%exn11 = load i8** %exn.slot
%4 = call i8* @llvm.eh.begincatch(i8* %exn11) #3
%5 = bitcast i8* %4 to i32*
call void @_Z10handle_intv()
%6 = load i32* %5, align 4
store i32 %6, i32* %i, align 4
%7 = load i32* %i, align 4
call void @_Z10handle_inti(i32 %7)
br label %invoke.cont2
invoke.cont2: ; preds = %catch
@ -71,11 +88,15 @@ eh.resume: ; preds = %catch.dispatch
; CHECK: define i8* @_Z4testv.catch(i8*, i8*) {
; CHECK: catch.entry:
; CHECK: %eh.alloc = call i8* @llvm.framerecover(i8* bitcast (void ()* @_Z4testv to i8*), i8* %1)
; CHECK: %ehdata = bitcast i8* %eh.alloc to %struct._Z4testv.ehdata*
; CHECK: %eh.obj.ptr = getelementptr inbounds %struct._Z4testv.ehdata* %ehdata, i32 0, i32 1
; CHECK: %eh.data = bitcast i8* %eh.alloc to %struct._Z4testv.ehdata*
; CHECK: %eh.obj.ptr = getelementptr inbounds %struct._Z4testv.ehdata* %eh.data, i32 0, i32 1
; CHECK: %eh.obj = load i8** %eh.obj.ptr
; CHECK: %i = getelementptr inbounds %struct._Z4testv.ehdata* %eh.data, i32 0, i32 2
; CHECK: %2 = bitcast i8* %eh.obj to i32*
; CHECK: call void @_Z10handle_intv()
; CHECK: %3 = load i32* %2, align 4
; CHECK: store i32 %3, i32* %i, align 4
; CHECK: %4 = load i32* %i, align 4
; CHECK: call void @_Z10handle_inti(i32 %4)
; CHECK: ret i8* blockaddress(@_Z4testv, %try.cont)
; CHECK: }
@ -90,7 +111,7 @@ declare i8* @llvm.eh.begincatch(i8*)
declare void @llvm.eh.endcatch()
declare void @_Z10handle_intv() #1
declare void @_Z10handle_inti(i32) #1
attributes #0 = { uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }