* Merge get_GVInitializer and getCharArrayLength into a single function

named getConstantStringLength. This is the common part of StrCpy and
  StrLen optimizations and probably several others, yet to be written. It
  performs all the validity checks for looking at constant arrays that are
  supposed to be null-terminated strings and then computes the actual
  length of the string.
* Implement the MemCpyOptimization class. This just turns memcpy of 1, 2, 4
  and 8 byte data blocks that are properly aligned on those boundaries into
  a load and a store. Much more could be done here but alignment
  restrictions and lack of knowledge of the target instruction set prevent
  use from doing significantly more. That will have to be delegated to the
  code generators as they lower llvm.memcpy calls.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21562 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2005-04-26 07:45:18 +00:00
parent 4ac0f21f7a
commit 20754ac069

View File

@ -137,64 +137,81 @@ namespace {
return memcpy_type;
}
// Provide some utility functions for various checks common to more than
// one CallOptimizer
Constant* get_GVInitializer(Value* V)
/// A function to compute the length of a null-terminated string of integers.
/// This function can't rely on the size of the constant array because there
/// could be a null terminator in the middle of the array. We also have to
/// bail out if we find a non-integer constant initializer of one of the
/// elements or if there is no null-terminator. The logic below checks
bool getConstantStringLength(Value* V, uint64_t& len )
{
assert(V != 0 && "Invalid args to getCharArrayLength");
len = 0; // make sure we initialize this
User* GEP = 0;
// If the value not a GEP instruction nor a constant expression with a GEP
// instruction, then return 0 because ConstantArray can't occur any other
// way
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
// any other way
if (GetElementPtrInst* GEPI = dyn_cast<GetElementPtrInst>(V))
GEP = GEPI;
else if (ConstantExpr* CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::GetElementPtr)
GEP = CE;
else
return 0;
return false;
else
return 0;
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt* op1 = dyn_cast<ConstantInt>(GEP->getOperand(1)))
if (op1->isNullValue())
;
else
{
if (!op1->isNullValue())
return false;
}
else
return false;
// Ensure that the second operand is a ConstantInt. If it isn't then this
// GEP is wonky and we're not really sure what were referencing into and
// better of not optimizing it.
if (!dyn_cast<ConstantInt>(GEP->getOperand(2)))
return 0;
// better of not optimizing it. While we're at it, get the second index
// value. We'll need this later for indexing the ConstantArray.
uint64_t start_idx = 0;
if (ConstantInt* CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
start_idx = CI->getRawValue();
else
return false;
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return 0;
return false;
// Return the result
return GV->getInitializer();
// Get the initializer and make sure its valid.
Constant* INTLZR = GV->getInitializer();
if (!INTLZR)
return false;
// Handle the ConstantAggregateZero case
if (ConstantAggregateZero* CAZ = dyn_cast<ConstantAggregateZero>(INTLZR))
{
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
len = 0;
return true;
}
/// A function to compute the length of a null-terminated string of integers.
/// This function can't rely on the size of the constant array because there
/// could be a null terminator in the middle of the array. We also have to
/// bail out if we find a non-integer constant initializer of one of the
/// elements or if there is no null-terminator. The logic below checks
bool getCharArrayLength(ConstantArray* A, unsigned& len)
{
assert(A != 0 && "Invalid args to getCharArrayLength");
// Get the supposed length
unsigned max_elems = A->getType()->getNumElements();
len = 0;
// Examine all the elements
for (; len < max_elems; len++)
// Must be a Constant Array
ConstantArray* A = dyn_cast<ConstantArray>(INTLZR);
if (!A)
return false;
// Get the number of elements in the array
uint64_t max_elems = A->getType()->getNumElements();
// Traverse the constant array from start_idx (derived above) which is
// the place the GEP refers to in the array.
for ( len = start_idx; len < max_elems; len++)
{
if (ConstantInt* CI = dyn_cast<ConstantInt>(A->getOperand(len)))
{
@ -207,6 +224,9 @@ namespace {
}
if (len >= max_elems)
return false; // This array isn't null terminated
// Subtract out the initial value from the length
len -= start_idx;
return true; // success!
}
}
@ -283,8 +303,7 @@ struct ExitInMainOptimization : public CallOptimizer
// type, external linkage, not varargs).
virtual bool ValidateCalledFunction(const Function* f)
{
if (f->getReturnType()->getTypeID() == Type::VoidTyID && !f->isVarArg())
if (f->arg_size() == 1)
if (f->arg_size() >= 1)
if (f->arg_begin()->getType()->isInteger())
return true;
return false;
@ -395,30 +414,21 @@ public:
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strcat. If we get null back, one of
// a variety of checks in get_GVInitializer failed
Constant* INTLZR = get_GVInitializer(ci->getOperand(2));
if (!INTLZR)
uint64_t len = 0;
if (!getConstantStringLength(ci->getOperand(2),len))
return false;
// Handle the ConstantArray case.
if (ConstantArray* A = dyn_cast<ConstantArray>(INTLZR))
// Handle the simple, do-nothing case
if (len == 0)
{
// First off, we can't do this if the constant array isn't a string,
// meaning its base type is sbyte and its constant initializers for all
// the elements are constantInt or constantInt expressions.
if (!A->isString())
return false;
ci->replaceAllUsesWith(ci->getOperand(1));
ci->eraseFromParent();
return true;
}
// Now we need to examine the source string to find its actual length. We
// can't rely on the size of the constant array becasue there could be a
// null terminator in the middle of the array. We also have to bail out if
// we find a non-integer constant initializer of one of the elements.
// Also, if we never find a terminator before the end of the array.
unsigned max_elems = A->getType()->getNumElements();
unsigned len = 0;
if (!getCharArrayLength(A,len))
return false;
else
len++; // increment for null terminator
// Increment the length because we actually want to memcpy the null
// terminator as well.
len++;
// Extract some information from the instruction
Module* M = ci->getParent()->getParent()->getParent();
@ -445,8 +455,7 @@ public:
vals.push_back(ci->getOperand(2)); // source
vals.push_back(ConstantSInt::get(Type::IntTy,len)); // length
vals.push_back(ConstantSInt::get(Type::IntTy,1)); // alignment
CallInst* memcpy_inst =
new CallInst(get_memcpy_func(M), vals, "", ci);
CallInst* memcpy_inst = new CallInst(get_memcpy_func(M), vals, "", ci);
// Finally, substitute the first operand of the strcat call for the
// strcat call itself since strcat returns its first operand; and,
@ -455,22 +464,6 @@ public:
ci->eraseFromParent();
return true;
}
// Handle the ConstantAggregateZero case
else if (ConstantAggregateZero* CAZ =
dyn_cast<ConstantAggregateZero>(INTLZR))
{
// We know this is the zero length string case so we can just avoid
// the strcat altogether and replace the CallInst with its first operand
// (what strcat returns).
ci->replaceAllUsesWith(ci->getOperand(1));
ci->eraseFromParent();
return true;
}
// We didn't pass the criteria for this optimization so return false.
return false;
}
} StrCatOptimizer;
/// This CallOptimizer will simplify a call to the strlen library function by
@ -496,37 +489,15 @@ struct StrLenOptimization : public CallOptimizer
/// @brief Perform the strlen optimization
virtual bool OptimizeCall(CallInst* ci)
{
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strlen. If we get null back, one of
// a variety of checks in get_GVInitializer failed
Constant* INTLZR = get_GVInitializer(ci->getOperand(1));
if (!INTLZR)
// Get the length of the string
uint64_t len = 0;
if (!getConstantStringLength(ci->getOperand(1),len))
return false;
if (ConstantArray* A = dyn_cast<ConstantArray>(INTLZR))
{
unsigned len = 0;
if (!getCharArrayLength(A,len))
return false;
ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len));
ci->eraseFromParent();
return true;
}
// Handle the ConstantAggregateZero case
else if (ConstantAggregateZero* CAZ =
dyn_cast<ConstantAggregateZero>(INTLZR))
{
// We know this is the zero length string case so we can just avoid
// the strlen altogether and replace the CallInst with zero
ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0));
ci->eraseFromParent();
return true;
}
// We didn't pass the criteria for this optimization so return false.
return false;
}
} StrLenOptimizer;
/// This CallOptimizer will simplify a call to the memcpy library function by
@ -542,7 +513,7 @@ struct MemCpyOptimization : public CallOptimizer
virtual bool ValidateCalledFunction(const Function* f)
{
if (f->getReturnType() == PointerType::get(Type::SByteTy))
if (f->arg_size() == 2)
if (f->arg_size() == 4)
{
Function::const_arg_iterator AI = f->arg_begin();
if (AI++->getType() == PointerType::get(Type::SByteTy))
@ -554,13 +525,57 @@ struct MemCpyOptimization : public CallOptimizer
return false;
}
/// Perform the optimization if the length of the string concatenated
/// is reasonably short and it is a constant array.
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length of the string and the
/// alignment match the sizes of our intrinsic types so we can do a load and
/// store instead of the memcpy call.
/// @brief Perform the memcpy optimization.
virtual bool OptimizeCall(CallInst* ci)
{
//
// We didn't pass the criteria for this optimization so return false.
ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(3));
assert(CI && "Operand should be ConstantInt");
uint64_t len = CI->getRawValue();
CI = dyn_cast<ConstantInt>(ci->getOperand(4));
assert(CI && "Operand should be ConstantInt");
uint64_t alignment = CI->getRawValue();
if (len != alignment)
return false;
Value* dest = ci->getOperand(1);
Value* src = ci->getOperand(2);
LoadInst* LI = 0;
CastInst* SrcCast = 0;
CastInst* DestCast = 0;
switch (len)
{
case 1:
SrcCast = new CastInst(src,PointerType::get(Type::SByteTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::SByteTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 2:
SrcCast = new CastInst(src,PointerType::get(Type::ShortTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::ShortTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 4:
SrcCast = new CastInst(src,PointerType::get(Type::IntTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::IntTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 8:
SrcCast = new CastInst(src,PointerType::get(Type::LongTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::LongTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
default:
return false;
}
StoreInst* SI = new StoreInst(LI, DestCast, ci);
ci->replaceAllUsesWith(dest);
ci->eraseFromParent();
return true;
}
} MemCpyOptimizer;
}