InstCombine: Optimize icmp eq/ne (shl Const2, A), Const1

The following implements the optimization for sequences of the form:
icmp eq/ne (shl Const2, A), Const1

Such sequences can be transformed to:
icmp eq/ne A, (TrailingZeros(Const1) - TrailingZeros(Const2))

This handles only the equality operators for now. Other operators need
to be handled.

Patch by Ankur Garg!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220162 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Majnemer 2014-10-19 08:23:08 +00:00
parent 908d4514f6
commit 242aeb9d84
3 changed files with 111 additions and 1 deletions

View File

@ -191,6 +191,8 @@ public:
ConstantInt *DivRHS);
Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1, ConstantInt *CI2);
Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1, ConstantInt *CI2);
Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred);
Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,

View File

@ -1119,6 +1119,49 @@ Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
return getConstant(false);
}
/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1,
ConstantInt *CI2) {
assert(I.isEquality() && "Cannot fold icmp gt/lt");
auto getConstant = [&I, this](bool IsTrue) {
if (I.getPredicate() == I.ICMP_NE)
IsTrue = !IsTrue;
return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
};
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
if (I.getPredicate() == I.ICMP_NE)
Pred = CmpInst::getInversePredicate(Pred);
return new ICmpInst(Pred, LHS, RHS);
};
APInt AP1 = CI1->getValue();
APInt AP2 = CI2->getValue();
assert(AP2 != 0 && "Handled in InstSimplify");
unsigned AP2TrailingZeros = AP2.countTrailingZeros();
if (!AP1 && AP2TrailingZeros != 0)
return getICmp(I.ICMP_UGE, A,
ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
if (AP1 == AP2)
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
// Get the distance between the lowest bits that are set.
int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
if (Shift > 0 && AP2.shl(Shift) == AP1)
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
// Shifting const2 will never be equal to const1.
return getConstant(false);
}
/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
///
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
@ -2575,13 +2618,17 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Builder->getInt(CI->getValue()-1));
}
// (icmp eq/ne (ashr/lshr const2, A), const1)
if (I.isEquality()) {
ConstantInt *CI2;
if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (ashr/lshr const2, A), const1)
return FoldICmpCstShrCst(I, Op0, A, CI, CI2);
}
if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
// (icmp eq/ne (shl const2, A), const1)
return FoldICmpCstShlCst(I, Op0, A, CI, CI2);
}
}
// If this comparison is a normal comparison, it demands all

View File

@ -1418,3 +1418,64 @@ define i1 @icmp_and_or_lshr_cst(i32 %x) {
%ret = icmp ne i32 %and, 0
ret i1 %ret
}
; CHECK-LABEL: @shl_ap1_zero_ap2_non_zero_2
; CHECK-NEXT: %cmp = icmp ugt i32 %a, 29
; CHECK-NEXT: ret i1 %cmp
define i1 @shl_ap1_zero_ap2_non_zero_2(i32 %a) {
%shl = shl i32 4, %a
%cmp = icmp eq i32 %shl, 0
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_zero_ap2_non_zero_4
; CHECK-NEXT: %cmp = icmp ugt i32 %a, 30
; CHECK-NEXT: ret i1 %cmp
define i1 @shl_ap1_zero_ap2_non_zero_4(i32 %a) {
%shl = shl i32 -2, %a
%cmp = icmp eq i32 %shl, 0
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_non_zero_ap2_non_zero_both_positive
; CHECK-NEXT: %cmp = icmp eq i32 %a, 0
; CHECK-NEXT: ret i1 %cmp
define i1 @shl_ap1_non_zero_ap2_non_zero_both_positive(i32 %a) {
%shl = shl i32 50, %a
%cmp = icmp eq i32 %shl, 50
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_non_zero_ap2_non_zero_both_negative
; CHECK-NEXT: %cmp = icmp eq i32 %a, 0
; CHECK-NEXT: ret i1 %cmp
define i1 @shl_ap1_non_zero_ap2_non_zero_both_negative(i32 %a) {
%shl = shl i32 -50, %a
%cmp = icmp eq i32 %shl, -50
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_non_zero_ap2_non_zero_ap1_1
; CHECK-NEXT: ret i1 false
define i1 @shl_ap1_non_zero_ap2_non_zero_ap1_1(i32 %a) {
%shl = shl i32 50, %a
%cmp = icmp eq i32 %shl, 25
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_non_zero_ap2_non_zero_ap1_2
; CHECK-NEXT: %cmp = icmp eq i32 %a, 1
; CHECK-NEXT: ret i1 %cmp
define i1 @shl_ap1_non_zero_ap2_non_zero_ap1_2(i32 %a) {
%shl = shl i32 25, %a
%cmp = icmp eq i32 %shl, 50
ret i1 %cmp
}
; CHECK-LABEL: @shl_ap1_non_zero_ap2_non_zero_ap1_3
; CHECK-NEXT: ret i1 false
define i1 @shl_ap1_non_zero_ap2_non_zero_ap1_3(i32 %a) {
%shl = shl i32 26, %a
%cmp = icmp eq i32 %shl, 50
ret i1 %cmp
}