Analysis: Reformulate WillNotOverflowUnsignedMul for reusability

WillNotOverflowUnsignedMul's smarts will live in ValueTracking as
computeOverflowForUnsignedMul.  It now returns a tri-state result:
never overflows, always overflows and sometimes overflows.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225076 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Majnemer 2015-01-02 07:29:43 +00:00
parent 71fc42dbf6
commit 25e8e79fab
5 changed files with 54 additions and 53 deletions

View File

@ -217,6 +217,12 @@ namespace llvm {
const DataLayout *DL = nullptr,
const DominatorTree *DT = nullptr);
enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
const DataLayout *DL,
AssumptionTracker *AT,
const Instruction *CxtI,
const DominatorTree *DT);
} // end namespace llvm
#endif

View File

@ -2672,3 +2672,42 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
return false;
}
OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
const DataLayout *DL,
AssumptionTracker *AT,
const Instruction *CxtI,
const DominatorTree *DT) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading zero bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt RHSKnownZero(BitWidth, 0);
APInt TmpKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, TmpKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
computeKnownBits(RHS, RHSKnownZero, TmpKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
// Note that underestimating the number of zero bits gives a more
// conservative answer.
unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
RHSKnownZero.countLeadingOnes();
// First handle the easy case: if we have enough zero bits there's
// definitely no overflow.
if (ZeroBits >= BitWidth)
return OverflowResult::NeverOverflows;
// Get the largest possible values for each operand.
APInt LHSMax = ~LHSKnownZero;
APInt RHSMax = ~RHSKnownZero;
// We know the multiply operation doesn't overflow if the maximum values for
// each operand will not overflow after we multiply them together.
bool Overflow;
LHSMax.umul_ov(RHSMax, Overflow);
return Overflow ? OverflowResult::MayOverflow
: OverflowResult::NeverOverflows;
}

View File

@ -286,7 +286,6 @@ private:
bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowUnsignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
@ -388,6 +387,10 @@ public:
return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AT, CxtI,
DT);
}
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
const Instruction *CxtI) {
return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AT, CxtI, DT);
}
private:
/// SimplifyAssociativeOrCommutative - This performs a few simplifications for

View File

@ -440,24 +440,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
case Intrinsic::umul_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, II);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, II);
// Get the largest possible values for each operand.
APInt LHSMax = ~LHSKnownZero;
APInt RHSMax = ~RHSKnownZero;
// If multiplying the maximum values does not overflow then we can turn
// this into a plain NUW mul.
bool Overflow;
LHSMax.umul_ov(RHSMax, Overflow);
if (!Overflow) {
OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, II);
if (OR == OverflowResult::NeverOverflows) {
return CreateOverflowTuple(II, Builder->CreateNUWMul(LHS, RHS), false);
}
} // FALL THROUGH

View File

@ -165,39 +165,6 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
return false;
}
/// \brief Return true if we can prove that:
/// (mul LHS, RHS) === (mul nuw LHS, RHS)
bool InstCombiner::WillNotOverflowUnsignedMul(Value *LHS, Value *RHS,
Instruction *CxtI) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading zero bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt RHSKnownZero(BitWidth, 0);
APInt TmpKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, TmpKnownOne, 0, CxtI);
computeKnownBits(RHS, RHSKnownZero, TmpKnownOne, 0, CxtI);
// Note that underestimating the number of zero bits gives a more
// conservative answer.
unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
RHSKnownZero.countLeadingOnes();
// First handle the easy case: if we have enough zero bits there's
// definitely no overflow.
if (ZeroBits >= BitWidth)
return true;
// There is an ambiguous cases where there can be no overflow:
// ZeroBits == BitWidth - 1
// However, determining overflow requires calculating the sign bit of
// LHS * RHS/2.
return false;
}
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@ -413,7 +380,9 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedMul(Op0, Op1, &I)) {
if (!I.hasNoUnsignedWrap() &&
computeOverflowForUnsignedMul(Op0, Op1, &I) ==
OverflowResult::NeverOverflows) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}