mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
Analysis: Reformulate WillNotOverflowUnsignedMul for reusability
WillNotOverflowUnsignedMul's smarts will live in ValueTracking as computeOverflowForUnsignedMul. It now returns a tri-state result: never overflows, always overflows and sometimes overflows. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225076 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
71fc42dbf6
commit
25e8e79fab
@ -217,6 +217,12 @@ namespace llvm {
|
||||
const DataLayout *DL = nullptr,
|
||||
const DominatorTree *DT = nullptr);
|
||||
|
||||
enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
|
||||
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
|
||||
const DataLayout *DL,
|
||||
AssumptionTracker *AT,
|
||||
const Instruction *CxtI,
|
||||
const DominatorTree *DT);
|
||||
} // end namespace llvm
|
||||
|
||||
#endif
|
||||
|
@ -2672,3 +2672,42 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
|
||||
const DataLayout *DL,
|
||||
AssumptionTracker *AT,
|
||||
const Instruction *CxtI,
|
||||
const DominatorTree *DT) {
|
||||
// Multiplying n * m significant bits yields a result of n + m significant
|
||||
// bits. If the total number of significant bits does not exceed the
|
||||
// result bit width (minus 1), there is no overflow.
|
||||
// This means if we have enough leading zero bits in the operands
|
||||
// we can guarantee that the result does not overflow.
|
||||
// Ref: "Hacker's Delight" by Henry Warren
|
||||
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
|
||||
APInt LHSKnownZero(BitWidth, 0);
|
||||
APInt RHSKnownZero(BitWidth, 0);
|
||||
APInt TmpKnownOne(BitWidth, 0);
|
||||
computeKnownBits(LHS, LHSKnownZero, TmpKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
|
||||
computeKnownBits(RHS, RHSKnownZero, TmpKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
|
||||
// Note that underestimating the number of zero bits gives a more
|
||||
// conservative answer.
|
||||
unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
|
||||
RHSKnownZero.countLeadingOnes();
|
||||
// First handle the easy case: if we have enough zero bits there's
|
||||
// definitely no overflow.
|
||||
if (ZeroBits >= BitWidth)
|
||||
return OverflowResult::NeverOverflows;
|
||||
|
||||
// Get the largest possible values for each operand.
|
||||
APInt LHSMax = ~LHSKnownZero;
|
||||
APInt RHSMax = ~RHSKnownZero;
|
||||
|
||||
// We know the multiply operation doesn't overflow if the maximum values for
|
||||
// each operand will not overflow after we multiply them together.
|
||||
bool Overflow;
|
||||
LHSMax.umul_ov(RHSMax, Overflow);
|
||||
|
||||
return Overflow ? OverflowResult::MayOverflow
|
||||
: OverflowResult::NeverOverflows;
|
||||
}
|
||||
|
@ -286,7 +286,6 @@ private:
|
||||
bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
|
||||
bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
|
||||
bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
|
||||
bool WillNotOverflowUnsignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
|
||||
Value *EmitGEPOffset(User *GEP);
|
||||
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
|
||||
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
|
||||
@ -388,6 +387,10 @@ public:
|
||||
return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AT, CxtI,
|
||||
DT);
|
||||
}
|
||||
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
|
||||
const Instruction *CxtI) {
|
||||
return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AT, CxtI, DT);
|
||||
}
|
||||
|
||||
private:
|
||||
/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
|
||||
|
@ -440,24 +440,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
}
|
||||
case Intrinsic::umul_with_overflow: {
|
||||
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
|
||||
unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
|
||||
|
||||
APInt LHSKnownZero(BitWidth, 0);
|
||||
APInt LHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, II);
|
||||
APInt RHSKnownZero(BitWidth, 0);
|
||||
APInt RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, II);
|
||||
|
||||
// Get the largest possible values for each operand.
|
||||
APInt LHSMax = ~LHSKnownZero;
|
||||
APInt RHSMax = ~RHSKnownZero;
|
||||
|
||||
// If multiplying the maximum values does not overflow then we can turn
|
||||
// this into a plain NUW mul.
|
||||
bool Overflow;
|
||||
LHSMax.umul_ov(RHSMax, Overflow);
|
||||
if (!Overflow) {
|
||||
OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, II);
|
||||
if (OR == OverflowResult::NeverOverflows) {
|
||||
return CreateOverflowTuple(II, Builder->CreateNUWMul(LHS, RHS), false);
|
||||
}
|
||||
} // FALL THROUGH
|
||||
|
@ -165,39 +165,6 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Return true if we can prove that:
|
||||
/// (mul LHS, RHS) === (mul nuw LHS, RHS)
|
||||
bool InstCombiner::WillNotOverflowUnsignedMul(Value *LHS, Value *RHS,
|
||||
Instruction *CxtI) {
|
||||
// Multiplying n * m significant bits yields a result of n + m significant
|
||||
// bits. If the total number of significant bits does not exceed the
|
||||
// result bit width (minus 1), there is no overflow.
|
||||
// This means if we have enough leading zero bits in the operands
|
||||
// we can guarantee that the result does not overflow.
|
||||
// Ref: "Hacker's Delight" by Henry Warren
|
||||
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
|
||||
APInt LHSKnownZero(BitWidth, 0);
|
||||
APInt RHSKnownZero(BitWidth, 0);
|
||||
APInt TmpKnownOne(BitWidth, 0);
|
||||
computeKnownBits(LHS, LHSKnownZero, TmpKnownOne, 0, CxtI);
|
||||
computeKnownBits(RHS, RHSKnownZero, TmpKnownOne, 0, CxtI);
|
||||
// Note that underestimating the number of zero bits gives a more
|
||||
// conservative answer.
|
||||
unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
|
||||
RHSKnownZero.countLeadingOnes();
|
||||
// First handle the easy case: if we have enough zero bits there's
|
||||
// definitely no overflow.
|
||||
if (ZeroBits >= BitWidth)
|
||||
return true;
|
||||
|
||||
// There is an ambiguous cases where there can be no overflow:
|
||||
// ZeroBits == BitWidth - 1
|
||||
// However, determining overflow requires calculating the sign bit of
|
||||
// LHS * RHS/2.
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
|
||||
bool Changed = SimplifyAssociativeOrCommutative(I);
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
@ -413,7 +380,9 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
|
||||
I.setHasNoSignedWrap(true);
|
||||
}
|
||||
|
||||
if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedMul(Op0, Op1, &I)) {
|
||||
if (!I.hasNoUnsignedWrap() &&
|
||||
computeOverflowForUnsignedMul(Op0, Op1, &I) ==
|
||||
OverflowResult::NeverOverflows) {
|
||||
Changed = true;
|
||||
I.setHasNoUnsignedWrap(true);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user