mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-13 04:38:24 +00:00
instcombine: Migrate math library call simplifications
This patch migrates the math library call simplifications from the simplify-libcalls pass into the instcombine library call simplifier. I have typically migrated just one simplifier at a time, but the math simplifiers are interdependent because: 1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt. 2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on the option -enable-double-float-shrink. These two factors made migrating each of these simplifiers individually more of a pain than it would be worth. So, I migrated them all together. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167815 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -20,6 +20,7 @@
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/IRBuilder.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Target/TargetLibraryInfo.h"
|
||||
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
||||
@ -1023,6 +1024,194 @@ struct MemSetOpt : public LibCallOptimization {
|
||||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Math Library Optimizations
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
|
||||
|
||||
struct UnaryDoubleFPOpt : public LibCallOptimization {
|
||||
bool CheckRetType;
|
||||
UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
|
||||
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
|
||||
FunctionType *FT = Callee->getFunctionType();
|
||||
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
|
||||
!FT->getParamType(0)->isDoubleTy())
|
||||
return 0;
|
||||
|
||||
if (CheckRetType) {
|
||||
// Check if all the uses for function like 'sin' are converted to float.
|
||||
for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
|
||||
++UseI) {
|
||||
FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
|
||||
if (Cast == 0 || !Cast->getType()->isFloatTy())
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// If this is something like 'floor((double)floatval)', convert to floorf.
|
||||
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
|
||||
if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
|
||||
return 0;
|
||||
|
||||
// floor((double)floatval) -> (double)floorf(floatval)
|
||||
Value *V = Cast->getOperand(0);
|
||||
V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
|
||||
return B.CreateFPExt(V, B.getDoubleTy());
|
||||
}
|
||||
};
|
||||
|
||||
struct UnsafeFPLibCallOptimization : public LibCallOptimization {
|
||||
bool UnsafeFPShrink;
|
||||
UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
|
||||
this->UnsafeFPShrink = UnsafeFPShrink;
|
||||
}
|
||||
};
|
||||
|
||||
struct CosOpt : public UnsafeFPLibCallOptimization {
|
||||
CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
|
||||
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
|
||||
Value *Ret = NULL;
|
||||
if (UnsafeFPShrink && Callee->getName() == "cos" &&
|
||||
TLI->has(LibFunc::cosf)) {
|
||||
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
|
||||
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
|
||||
}
|
||||
|
||||
FunctionType *FT = Callee->getFunctionType();
|
||||
// Just make sure this has 1 argument of FP type, which matches the
|
||||
// result type.
|
||||
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
|
||||
!FT->getParamType(0)->isFloatingPointTy())
|
||||
return Ret;
|
||||
|
||||
// cos(-x) -> cos(x)
|
||||
Value *Op1 = CI->getArgOperand(0);
|
||||
if (BinaryOperator::isFNeg(Op1)) {
|
||||
BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
|
||||
return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
|
||||
}
|
||||
return Ret;
|
||||
}
|
||||
};
|
||||
|
||||
struct PowOpt : public UnsafeFPLibCallOptimization {
|
||||
PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
|
||||
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
|
||||
Value *Ret = NULL;
|
||||
if (UnsafeFPShrink && Callee->getName() == "pow" &&
|
||||
TLI->has(LibFunc::powf)) {
|
||||
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
|
||||
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
|
||||
}
|
||||
|
||||
FunctionType *FT = Callee->getFunctionType();
|
||||
// Just make sure this has 2 arguments of the same FP type, which match the
|
||||
// result type.
|
||||
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
|
||||
FT->getParamType(0) != FT->getParamType(1) ||
|
||||
!FT->getParamType(0)->isFloatingPointTy())
|
||||
return Ret;
|
||||
|
||||
Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
|
||||
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
|
||||
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
|
||||
return Op1C;
|
||||
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
|
||||
return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
|
||||
}
|
||||
|
||||
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
|
||||
if (Op2C == 0) return Ret;
|
||||
|
||||
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
|
||||
return ConstantFP::get(CI->getType(), 1.0);
|
||||
|
||||
if (Op2C->isExactlyValue(0.5)) {
|
||||
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
|
||||
// This is faster than calling pow, and still handles negative zero
|
||||
// and negative infinity correctly.
|
||||
// TODO: In fast-math mode, this could be just sqrt(x).
|
||||
// TODO: In finite-only mode, this could be just fabs(sqrt(x)).
|
||||
Value *Inf = ConstantFP::getInfinity(CI->getType());
|
||||
Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
|
||||
Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
|
||||
Callee->getAttributes());
|
||||
Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
|
||||
Callee->getAttributes());
|
||||
Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
|
||||
Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
|
||||
return Sel;
|
||||
}
|
||||
|
||||
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
|
||||
return Op1;
|
||||
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
|
||||
return B.CreateFMul(Op1, Op1, "pow2");
|
||||
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
|
||||
return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
|
||||
Op1, "powrecip");
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct Exp2Opt : public UnsafeFPLibCallOptimization {
|
||||
Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
|
||||
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
|
||||
Value *Ret = NULL;
|
||||
if (UnsafeFPShrink && Callee->getName() == "exp2" &&
|
||||
TLI->has(LibFunc::exp2)) {
|
||||
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
|
||||
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
|
||||
}
|
||||
|
||||
FunctionType *FT = Callee->getFunctionType();
|
||||
// Just make sure this has 1 argument of FP type, which matches the
|
||||
// result type.
|
||||
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
|
||||
!FT->getParamType(0)->isFloatingPointTy())
|
||||
return Ret;
|
||||
|
||||
Value *Op = CI->getArgOperand(0);
|
||||
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
|
||||
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
|
||||
Value *LdExpArg = 0;
|
||||
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
|
||||
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
|
||||
LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
|
||||
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
|
||||
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
|
||||
LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
|
||||
}
|
||||
|
||||
if (LdExpArg) {
|
||||
const char *Name;
|
||||
if (Op->getType()->isFloatTy())
|
||||
Name = "ldexpf";
|
||||
else if (Op->getType()->isDoubleTy())
|
||||
Name = "ldexp";
|
||||
else
|
||||
Name = "ldexpl";
|
||||
|
||||
Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
|
||||
if (!Op->getType()->isFloatTy())
|
||||
One = ConstantExpr::getFPExtend(One, Op->getType());
|
||||
|
||||
Module *M = Caller->getParent();
|
||||
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
|
||||
Op->getType(),
|
||||
B.getInt32Ty(), NULL);
|
||||
CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
|
||||
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
|
||||
CI->setCallingConv(F->getCallingConv());
|
||||
|
||||
return CI;
|
||||
}
|
||||
return Ret;
|
||||
}
|
||||
};
|
||||
|
||||
} // End anonymous namespace.
|
||||
|
||||
namespace llvm {
|
||||
@ -1031,6 +1220,7 @@ class LibCallSimplifierImpl {
|
||||
const DataLayout *TD;
|
||||
const TargetLibraryInfo *TLI;
|
||||
const LibCallSimplifier *LCS;
|
||||
bool UnsafeFPShrink;
|
||||
StringMap<LibCallOptimization*> Optimizations;
|
||||
|
||||
// Fortified library call optimizations.
|
||||
@ -1064,14 +1254,23 @@ class LibCallSimplifierImpl {
|
||||
MemMoveOpt MemMove;
|
||||
MemSetOpt MemSet;
|
||||
|
||||
// Math library call optimizations.
|
||||
UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
|
||||
CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
|
||||
|
||||
void initOptimizations();
|
||||
void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
|
||||
void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
|
||||
public:
|
||||
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
|
||||
const LibCallSimplifier *LCS) {
|
||||
const LibCallSimplifier *LCS,
|
||||
bool UnsafeFPShrink = false)
|
||||
: UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true),
|
||||
Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
|
||||
this->TD = TD;
|
||||
this->TLI = TLI;
|
||||
this->LCS = LCS;
|
||||
this->UnsafeFPShrink = UnsafeFPShrink;
|
||||
}
|
||||
|
||||
Value *optimizeCall(CallInst *CI);
|
||||
@ -1115,6 +1314,59 @@ void LibCallSimplifierImpl::initOptimizations() {
|
||||
addOpt(LibFunc::memcpy, &MemCpy);
|
||||
addOpt(LibFunc::memmove, &MemMove);
|
||||
addOpt(LibFunc::memset, &MemSet);
|
||||
|
||||
// Math library call optimizations.
|
||||
addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
|
||||
addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
|
||||
|
||||
if(UnsafeFPShrink) {
|
||||
addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
|
||||
addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
|
||||
}
|
||||
|
||||
addOpt(LibFunc::cosf, &Cos);
|
||||
addOpt(LibFunc::cos, &Cos);
|
||||
addOpt(LibFunc::cosl, &Cos);
|
||||
addOpt(LibFunc::powf, &Pow);
|
||||
addOpt(LibFunc::pow, &Pow);
|
||||
addOpt(LibFunc::powl, &Pow);
|
||||
Optimizations["llvm.pow.f32"] = &Pow;
|
||||
Optimizations["llvm.pow.f64"] = &Pow;
|
||||
Optimizations["llvm.pow.f80"] = &Pow;
|
||||
Optimizations["llvm.pow.f128"] = &Pow;
|
||||
Optimizations["llvm.pow.ppcf128"] = &Pow;
|
||||
addOpt(LibFunc::exp2l, &Exp2);
|
||||
addOpt(LibFunc::exp2, &Exp2);
|
||||
addOpt(LibFunc::exp2f, &Exp2);
|
||||
Optimizations["llvm.exp2.ppcf128"] = &Exp2;
|
||||
Optimizations["llvm.exp2.f128"] = &Exp2;
|
||||
Optimizations["llvm.exp2.f80"] = &Exp2;
|
||||
Optimizations["llvm.exp2.f64"] = &Exp2;
|
||||
Optimizations["llvm.exp2.f32"] = &Exp2;
|
||||
}
|
||||
|
||||
Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
|
||||
@ -1135,9 +1387,16 @@ void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
|
||||
Optimizations[TLI->getName(F)] = Opt;
|
||||
}
|
||||
|
||||
void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2,
|
||||
LibCallOptimization* Opt) {
|
||||
if (TLI->has(F1) && TLI->has(F2))
|
||||
Optimizations[TLI->getName(F1)] = Opt;
|
||||
}
|
||||
|
||||
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
|
||||
const TargetLibraryInfo *TLI) {
|
||||
Impl = new LibCallSimplifierImpl(TD, TLI, this);
|
||||
const TargetLibraryInfo *TLI,
|
||||
bool UnsafeFPShrink) {
|
||||
Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
|
||||
}
|
||||
|
||||
LibCallSimplifier::~LibCallSimplifier() {
|
||||
|
Reference in New Issue
Block a user