mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-15 13:40:33 +00:00
Reimplement data structure analysis
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2868 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
9067068c35
commit
2b0f739d57
lib/Analysis/DataStructure
@ -1,258 +0,0 @@
|
||||
//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
|
||||
//
|
||||
// Compute the interprocedural closure of a data structure graph
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
|
||||
//#define DEBUG_IP_CLOSURE 1
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
using std::cerr;
|
||||
|
||||
// Make all of the pointers that point to Val also point to N.
|
||||
//
|
||||
static void copyEdgesFromTo(PointerVal Val, DSNode *N) {
|
||||
unsigned ValIdx = Val.Index;
|
||||
unsigned NLinks = N->getNumLinks();
|
||||
|
||||
const std::vector<PointerValSet*> &PVSsToUpdate(Val.Node->getReferrers());
|
||||
for (unsigned i = 0, e = PVSsToUpdate.size(); i != e; ++i) {
|
||||
// Loop over all of the pointers pointing to Val...
|
||||
PointerValSet &PVS = *PVSsToUpdate[i];
|
||||
for (unsigned j = 0, je = PVS.size(); j != je; ++j) {
|
||||
if (PVS[j].Node == Val.Node && PVS[j].Index >= ValIdx &&
|
||||
PVS[j].Index < ValIdx+NLinks)
|
||||
PVS.add(PointerVal(N, PVS[j].Index-ValIdx));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ResolveNodesTo(const PointerValSet &FromVals,
|
||||
const PointerValSet &ToVals) {
|
||||
// Only resolve the first pointer, although there many be many pointers here.
|
||||
// The problem is that the inlined function might return one of the arguments
|
||||
// to the function, and if so, extra values can be added to the arg or call
|
||||
// node that point to what the other one got resolved to. Since these will
|
||||
// be added to the end of the PVS pointed in, we just ignore them.
|
||||
//
|
||||
assert(!FromVals.empty() && "From should have at least a shadow node!");
|
||||
const PointerVal &FromPtr = FromVals[0];
|
||||
|
||||
assert(FromPtr.Index == 0 &&
|
||||
"Resolved node return pointer should be index 0!");
|
||||
DSNode *N = FromPtr.Node;
|
||||
|
||||
// Make everything that pointed to the shadow node also point to the values in
|
||||
// ToVals...
|
||||
//
|
||||
for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
|
||||
copyEdgesFromTo(ToVals[i], N);
|
||||
|
||||
// Make everything that pointed to the shadow node now also point to the
|
||||
// values it is equivalent to...
|
||||
const std::vector<PointerValSet*> &PVSToUpdate(N->getReferrers());
|
||||
for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
|
||||
PVSToUpdate[i]->add(ToVals);
|
||||
}
|
||||
|
||||
|
||||
// ResolveNodeTo - The specified node is now known to point to the set of values
|
||||
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
|
||||
//
|
||||
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
|
||||
assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
|
||||
|
||||
const PointerValSet &PVS = Node->getLink(0);
|
||||
ResolveNodesTo(PVS, ToVals);
|
||||
}
|
||||
|
||||
// isResolvableCallNode - Return true if node is a call node and it is a call
|
||||
// node that we can inline...
|
||||
//
|
||||
static bool isResolvableCallNode(CallDSNode *CN) {
|
||||
// Only operate on call nodes with direct function calls
|
||||
if (CN->getArgValues(0).size() == 1 &&
|
||||
isa<GlobalDSNode>(CN->getArgValues(0)[0].Node)) {
|
||||
GlobalDSNode *GDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
|
||||
Function *F = cast<Function>(GDN->getGlobal());
|
||||
|
||||
// Only work on call nodes with direct calls to methods with bodies.
|
||||
return !F->isExternal();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#include "Support/CommandLine.h"
|
||||
static cl::Int InlineLimit("dsinlinelimit", "Max number of graphs to inline when computing ds closure", cl::Hidden, 100);
|
||||
|
||||
// computeClosure - Replace all of the resolvable call nodes with the contents
|
||||
// of their corresponding method data structure graph...
|
||||
//
|
||||
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
|
||||
// Note that this cannot be a real vector because the keys will be changing
|
||||
// as nodes are eliminated!
|
||||
//
|
||||
typedef std::pair<std::vector<PointerValSet>, CallInst *> CallDescriptor;
|
||||
std::vector<std::pair<CallDescriptor, PointerValSet> > CallMap;
|
||||
|
||||
unsigned NumInlines = 0;
|
||||
|
||||
// Loop over the resolvable call nodes...
|
||||
std::vector<CallDSNode*>::iterator NI;
|
||||
NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
|
||||
while (NI != CallNodes.end()) {
|
||||
CallDSNode *CN = *NI;
|
||||
GlobalDSNode *FGDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
|
||||
Function *F = cast<Function>(FGDN->getGlobal());
|
||||
|
||||
if ((int)NumInlines++ == InlineLimit) { // CUTE hack huh?
|
||||
cerr << "Infinite (?) recursion halted\n";
|
||||
cerr << "Not inlining: " << F->getName() << "\n";
|
||||
CN->dump();
|
||||
return;
|
||||
}
|
||||
|
||||
CallNodes.erase(NI); // Remove the call node from the graph
|
||||
|
||||
unsigned CallNodeOffset = NI-CallNodes.begin();
|
||||
|
||||
// Find out if we have already incorporated this node... if so, it will be
|
||||
// in the CallMap...
|
||||
//
|
||||
|
||||
#if 0
|
||||
cerr << "\nSearching for: " << (void*)CN->getCall() << ": ";
|
||||
for (unsigned X = 0; X != CN->getArgs().size(); ++X) {
|
||||
cerr << " " << X << " is\n";
|
||||
CN->getArgs().first[X].print(cerr);
|
||||
}
|
||||
#endif
|
||||
|
||||
const std::vector<PointerValSet> &Args = CN->getArgs();
|
||||
PointerValSet *CMI = 0;
|
||||
for (unsigned i = 0, e = CallMap.size(); i != e; ++i) {
|
||||
#if 0
|
||||
cerr << "Found: " << (void*)CallMap[i].first.second << ": ";
|
||||
for (unsigned X = 0; X != CallMap[i].first.first.size(); ++X) {
|
||||
cerr << " " << X << " is\n"; CallMap[i].first.first[X].print(cerr);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Look to see if the function call takes a superset of the values we are
|
||||
// providing as input
|
||||
//
|
||||
CallDescriptor &CD = CallMap[i].first;
|
||||
if (CD.second == CN->getCall() && CD.first.size() == Args.size()) {
|
||||
bool FoundMismatch = false;
|
||||
for (unsigned j = 0, je = Args.size(); j != je; ++j) {
|
||||
PointerValSet ArgSet = CD.first[j];
|
||||
if (ArgSet.add(Args[j])) {
|
||||
FoundMismatch = true; break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!FoundMismatch) { CMI = &CallMap[i].second; break; }
|
||||
}
|
||||
}
|
||||
|
||||
// Hold the set of values that correspond to the incorporated methods
|
||||
// return set.
|
||||
//
|
||||
PointerValSet RetVals;
|
||||
|
||||
if (CMI) {
|
||||
// We have already inlined an identical function call!
|
||||
RetVals = *CMI;
|
||||
} else {
|
||||
// Get the datastructure graph for the new method. Note that we are not
|
||||
// allowed to modify this graph because it will be the cached graph that
|
||||
// is returned by other users that want the local datastructure graph for
|
||||
// a method.
|
||||
//
|
||||
const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
|
||||
|
||||
// StartNode - The first node of the incorporated graph, last node of the
|
||||
// preexisting data structure graph...
|
||||
//
|
||||
unsigned StartAllocNode = AllocNodes.size();
|
||||
|
||||
// Incorporate a copy of the called function graph into the current graph,
|
||||
// allowing us to do local transformations to local graph to link
|
||||
// arguments to call values, and call node to return value...
|
||||
//
|
||||
std::vector<PointerValSet> Args;
|
||||
RetVals = cloneFunctionIntoSelf(NewFunction, false, Args);
|
||||
CallMap.push_back(make_pair(CallDescriptor(CN->getArgs(), CN->getCall()),
|
||||
RetVals));
|
||||
|
||||
// If the call node has arguments, process them now!
|
||||
assert(Args.size() == CN->getNumArgs()-1 &&
|
||||
"Call node doesn't match function?");
|
||||
|
||||
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
||||
// Now we make all of the nodes inside of the incorporated method
|
||||
// point to the real arguments values, not to the shadow nodes for the
|
||||
// argument.
|
||||
ResolveNodesTo(Args[i], CN->getArgValues(i+1));
|
||||
}
|
||||
|
||||
// Loop through the nodes, deleting alloca nodes in the inlined function.
|
||||
// Since the memory has been released, we cannot access their pointer
|
||||
// fields (with defined results at least), so it is not possible to use
|
||||
// any pointers to the alloca. Drop them now, and remove the alloca's
|
||||
// since they are dead (we just removed all links to them).
|
||||
//
|
||||
for (unsigned i = StartAllocNode; i != AllocNodes.size(); ++i)
|
||||
if (AllocNodes[i]->isAllocaNode()) {
|
||||
AllocDSNode *NDS = AllocNodes[i];
|
||||
NDS->removeAllIncomingEdges(); // These edges are invalid now
|
||||
delete NDS; // Node is dead
|
||||
AllocNodes.erase(AllocNodes.begin()+i); // Remove slot in Nodes array
|
||||
--i; // Don't skip the next node
|
||||
}
|
||||
}
|
||||
|
||||
// If the function returns a pointer value... Resolve values pointing to
|
||||
// the shadow nodes pointed to by CN to now point the values in RetVals...
|
||||
//
|
||||
if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
|
||||
|
||||
// Now the call node is completely destructable. Eliminate it now.
|
||||
delete CN;
|
||||
|
||||
bool Changed = true;
|
||||
while (Changed) {
|
||||
// Eliminate shadow nodes that are not distinguishable from some other
|
||||
// node in the graph...
|
||||
//
|
||||
Changed = UnlinkUndistinguishableNodes();
|
||||
|
||||
// Eliminate shadow nodes that are now extraneous due to linking...
|
||||
Changed |= RemoveUnreachableNodes();
|
||||
}
|
||||
|
||||
//if (F == Func) return; // Only do one self inlining
|
||||
|
||||
// Move on to the next call node...
|
||||
NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
|
||||
}
|
||||
|
||||
// Drop references to globals...
|
||||
CallMap.clear();
|
||||
|
||||
bool Changed = true;
|
||||
while (Changed) {
|
||||
// Eliminate shadow nodes that are not distinguishable from some other
|
||||
// node in the graph...
|
||||
//
|
||||
Changed = UnlinkUndistinguishableNodes();
|
||||
|
||||
// Eliminate shadow nodes that are now extraneous due to linking...
|
||||
Changed |= RemoveUnreachableNodes();
|
||||
}
|
||||
}
|
@ -1,373 +0,0 @@
|
||||
//===- EliminateNodes.cpp - Prune unneccesary nodes in the graph ----------===//
|
||||
//
|
||||
// This file contains two node optimizations:
|
||||
// 1. UnlinkUndistinguishableNodes - Often, after unification, shadow
|
||||
// nodes are left around that should not exist anymore. An example is when
|
||||
// a shadow gets unified with a 'new' node, the following graph gets
|
||||
// generated: %X -> Shadow, %X -> New. Since all of the edges to the
|
||||
// shadow node also all go to the New node, we can eliminate the shadow.
|
||||
//
|
||||
// 2. RemoveUnreachableNodes - Remove shadow and allocation nodes that are not
|
||||
// reachable from some other node in the graph. Unreachable nodes are left
|
||||
// lying around often because a method only refers to some allocations with
|
||||
// scalar values or an alloca, then when it is inlined, these references
|
||||
// disappear and the nodes become homeless and prunable.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/DataStructureGraph.h"
|
||||
#include "llvm/Value.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
using std::vector;
|
||||
|
||||
//#define DEBUG_NODE_ELIMINATE 1
|
||||
|
||||
static void DestroyFirstNodeOfPair(DSNode *N1, DSNode *N2) {
|
||||
#ifdef DEBUG_NODE_ELIMINATE
|
||||
std::cerr << "Found Indistinguishable Node:\n";
|
||||
N1->print(std::cerr);
|
||||
#endif
|
||||
|
||||
// The nodes can be merged. Make sure that N2 contains all of the
|
||||
// outgoing edges (fields) that N1 does...
|
||||
//
|
||||
assert(N1->getNumLinks() == N2->getNumLinks() &&
|
||||
"Same type, diff # fields?");
|
||||
for (unsigned i = 0, e = N1->getNumLinks(); i != e; ++i)
|
||||
N2->getLink(i).add(N1->getLink(i));
|
||||
|
||||
// Now make sure that all of the nodes that point to N1 also point to the node
|
||||
// that we are merging it with...
|
||||
//
|
||||
const vector<PointerValSet*> &Refs = N1->getReferrers();
|
||||
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
|
||||
PointerValSet &PVS = *Refs[i];
|
||||
|
||||
bool RanOnce = false;
|
||||
for (unsigned j = 0, je = PVS.size(); j != je; ++j)
|
||||
if (PVS[j].Node == N1) {
|
||||
RanOnce = true;
|
||||
PVS.add(PointerVal(N2, PVS[j].Index));
|
||||
}
|
||||
|
||||
assert(RanOnce && "Node on user set but cannot find the use!");
|
||||
}
|
||||
|
||||
N1->mergeInto(N2);
|
||||
N1->removeAllIncomingEdges();
|
||||
delete N1;
|
||||
}
|
||||
|
||||
// isIndistinguishableNode - A node is indistinguishable if some other node
|
||||
// has exactly the same incoming links to it and if the node considers itself
|
||||
// to be the same as the other node...
|
||||
//
|
||||
static bool isIndistinguishableNode(DSNode *DN) {
|
||||
if (DN->getReferrers().empty()) { // No referrers...
|
||||
if (isa<ShadowDSNode>(DN) || isa<AllocDSNode>(DN)) {
|
||||
delete DN;
|
||||
return true; // Node is trivially dead
|
||||
} else
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pick a random referrer... Ptr is the things that the referrer points to.
|
||||
// Since DN is in the Ptr set, look through the set seeing if there are any
|
||||
// other nodes that are exactly equilivant to DN (with the exception of node
|
||||
// type), but are not DN. If anything exists, then DN is indistinguishable.
|
||||
//
|
||||
|
||||
DSNode *IndFrom = 0;
|
||||
const vector<PointerValSet*> &Refs = DN->getReferrers();
|
||||
for (unsigned R = 0, RE = Refs.size(); R != RE; ++R) {
|
||||
const PointerValSet &Ptr = *Refs[R];
|
||||
|
||||
for (unsigned i = 0, e = Ptr.size(); i != e; ++i) {
|
||||
DSNode *N2 = Ptr[i].Node;
|
||||
if (Ptr[i].Index == 0 && N2 != cast<DSNode>(DN) &&
|
||||
DN->getType() == N2->getType() && DN->isEquivalentTo(N2)) {
|
||||
|
||||
IndFrom = N2;
|
||||
R = RE-1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we haven't found an equivalent node to merge with, see if one of the
|
||||
// nodes pointed to by this node is equivalent to this one...
|
||||
//
|
||||
if (IndFrom == 0) {
|
||||
unsigned NumOutgoing = DN->getNumOutgoingLinks();
|
||||
for (DSNode::iterator I = DN->begin(), E = DN->end(); I != E; ++I) {
|
||||
DSNode *Linked = *I;
|
||||
if (Linked != DN && Linked->getNumOutgoingLinks() == NumOutgoing &&
|
||||
DN->getType() == Linked->getType() && DN->isEquivalentTo(Linked)) {
|
||||
#if 0
|
||||
// Make sure the leftover node contains links to everything we do...
|
||||
for (unsigned i = 0, e = DN->getNumLinks(); i != e; ++i)
|
||||
Linked->getLink(i).add(DN->getLink(i));
|
||||
#endif
|
||||
|
||||
IndFrom = Linked;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If DN is indistinguishable from some other node, merge them now...
|
||||
if (IndFrom == 0)
|
||||
return false; // Otherwise, nothing found, perhaps next time....
|
||||
|
||||
DestroyFirstNodeOfPair(DN, IndFrom);
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename NodeTy>
|
||||
static bool removeIndistinguishableNodes(vector<NodeTy*> &Nodes) {
|
||||
bool Changed = false;
|
||||
vector<NodeTy*>::iterator I = Nodes.begin();
|
||||
while (I != Nodes.end()) {
|
||||
if (isIndistinguishableNode(*I)) {
|
||||
I = Nodes.erase(I);
|
||||
Changed = true;
|
||||
} else {
|
||||
++I;
|
||||
}
|
||||
}
|
||||
return Changed;
|
||||
}
|
||||
|
||||
template<typename NodeTy>
|
||||
static bool removeIndistinguishableNodePairs(vector<NodeTy*> &Nodes) {
|
||||
bool Changed = false;
|
||||
vector<NodeTy*>::iterator I = Nodes.begin();
|
||||
while (I != Nodes.end()) {
|
||||
NodeTy *N1 = *I++;
|
||||
for (vector<NodeTy*>::iterator I2 = I, I2E = Nodes.end();
|
||||
I2 != I2E; ++I2) {
|
||||
NodeTy *N2 = *I2;
|
||||
if (N1->isEquivalentTo(N2)) {
|
||||
DestroyFirstNodeOfPair(N1, N2);
|
||||
--I;
|
||||
I = Nodes.erase(I);
|
||||
Changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// UnlinkUndistinguishableNodes - Eliminate shadow nodes that are not
|
||||
// distinguishable from some other node in the graph...
|
||||
//
|
||||
bool FunctionDSGraph::UnlinkUndistinguishableNodes() {
|
||||
// Loop over all of the shadow nodes, checking to see if they are
|
||||
// indistinguishable from some other node. If so, eliminate the node!
|
||||
//
|
||||
return
|
||||
removeIndistinguishableNodes(AllocNodes) |
|
||||
removeIndistinguishableNodes(ShadowNodes) |
|
||||
removeIndistinguishableNodePairs(CallNodes) |
|
||||
removeIndistinguishableNodePairs(GlobalNodes);
|
||||
}
|
||||
|
||||
static void MarkReferredNodesReachable(DSNode *N,
|
||||
vector<ShadowDSNode*> &ShadowNodes,
|
||||
vector<bool> &ReachableShadowNodes,
|
||||
vector<AllocDSNode*> &AllocNodes,
|
||||
vector<bool> &ReachableAllocNodes);
|
||||
|
||||
static inline void MarkReferredNodeSetReachable(const PointerValSet &PVS,
|
||||
vector<ShadowDSNode*> &ShadowNodes,
|
||||
vector<bool> &ReachableShadowNodes,
|
||||
vector<AllocDSNode*> &AllocNodes,
|
||||
vector<bool> &ReachableAllocNodes) {
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
||||
if (isa<ShadowDSNode>(PVS[i].Node) || isa<AllocDSNode>(PVS[i].Node))
|
||||
MarkReferredNodesReachable(PVS[i].Node, ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
}
|
||||
|
||||
static void MarkReferredNodesReachable(DSNode *N,
|
||||
vector<ShadowDSNode*> &ShadowNodes,
|
||||
vector<bool> &ReachableShadowNodes,
|
||||
vector<AllocDSNode*> &AllocNodes,
|
||||
vector<bool> &ReachableAllocNodes) {
|
||||
assert(ShadowNodes.size() == ReachableShadowNodes.size());
|
||||
assert(AllocNodes.size() == ReachableAllocNodes.size());
|
||||
|
||||
if (ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(N)) {
|
||||
vector<ShadowDSNode*>::iterator I =
|
||||
std::find(ShadowNodes.begin(), ShadowNodes.end(), Shad);
|
||||
unsigned i = I-ShadowNodes.begin();
|
||||
if (ReachableShadowNodes[i]) return; // Recursion detected, abort...
|
||||
ReachableShadowNodes[i] = true;
|
||||
} else if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(N)) {
|
||||
vector<AllocDSNode*>::iterator I =
|
||||
std::find(AllocNodes.begin(), AllocNodes.end(), Alloc);
|
||||
unsigned i = I-AllocNodes.begin();
|
||||
if (ReachableAllocNodes[i]) return; // Recursion detected, abort...
|
||||
ReachableAllocNodes[i] = true;
|
||||
}
|
||||
|
||||
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
|
||||
MarkReferredNodeSetReachable(N->getLink(i),
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
|
||||
const vector<PointerValSet> *Links = N->getAuxLinks();
|
||||
if (Links)
|
||||
for (unsigned i = 0, e = Links->size(); i != e; ++i)
|
||||
MarkReferredNodeSetReachable((*Links)[i],
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
}
|
||||
|
||||
void FunctionDSGraph::MarkEscapeableNodesReachable(
|
||||
vector<bool> &ReachableShadowNodes,
|
||||
vector<bool> &ReachableAllocNodes) {
|
||||
// Mark all shadow nodes that have edges from other nodes as reachable.
|
||||
// Recursively mark any shadow nodes pointed to by the newly live shadow
|
||||
// nodes as also alive.
|
||||
//
|
||||
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
|
||||
MarkReferredNodesReachable(GlobalNodes[i],
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
|
||||
for (unsigned i = 0, e = CallNodes.size(); i != e; ++i)
|
||||
MarkReferredNodesReachable(CallNodes[i],
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
|
||||
// Mark all nodes in the return set as being reachable...
|
||||
MarkReferredNodeSetReachable(RetNode,
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
}
|
||||
|
||||
bool FunctionDSGraph::RemoveUnreachableNodes() {
|
||||
bool Changed = false;
|
||||
bool LocalChange = true;
|
||||
|
||||
while (LocalChange) {
|
||||
LocalChange = false;
|
||||
// Reachable*Nodes - Contains true if there is an edge from a reachable
|
||||
// node to the numbered node...
|
||||
//
|
||||
vector<bool> ReachableShadowNodes(ShadowNodes.size());
|
||||
vector<bool> ReachableAllocNodes (AllocNodes.size());
|
||||
|
||||
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
|
||||
|
||||
// Mark all nodes in the value map as being reachable...
|
||||
for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
|
||||
E = ValueMap.end(); I != E; ++I)
|
||||
MarkReferredNodeSetReachable(I->second,
|
||||
ShadowNodes, ReachableShadowNodes,
|
||||
AllocNodes, ReachableAllocNodes);
|
||||
|
||||
// At this point, all reachable shadow nodes have a true value in the
|
||||
// Reachable vector. This means that any shadow nodes without an entry in
|
||||
// the reachable vector are not reachable and should be removed. This is
|
||||
// a two part process, because we must drop all references before we delete
|
||||
// the shadow nodes [in case cycles exist].
|
||||
//
|
||||
for (unsigned i = 0; i != ShadowNodes.size(); ++i)
|
||||
if (!ReachableShadowNodes[i]) {
|
||||
// Track all unreachable nodes...
|
||||
#if DEBUG_NODE_ELIMINATE
|
||||
std::cerr << "Unreachable node eliminated:\n";
|
||||
ShadowNodes[i]->print(std::cerr);
|
||||
#endif
|
||||
ShadowNodes[i]->removeAllIncomingEdges();
|
||||
delete ShadowNodes[i];
|
||||
|
||||
// Remove from reachable...
|
||||
ReachableShadowNodes.erase(ReachableShadowNodes.begin()+i);
|
||||
ShadowNodes.erase(ShadowNodes.begin()+i); // Remove node entry
|
||||
--i; // Don't skip the next node.
|
||||
LocalChange = Changed = true;
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i != AllocNodes.size(); ++i)
|
||||
if (!ReachableAllocNodes[i]) {
|
||||
// Track all unreachable nodes...
|
||||
#if DEBUG_NODE_ELIMINATE
|
||||
std::cerr << "Unreachable node eliminated:\n";
|
||||
AllocNodes[i]->print(std::cerr);
|
||||
#endif
|
||||
AllocNodes[i]->removeAllIncomingEdges();
|
||||
delete AllocNodes[i];
|
||||
|
||||
// Remove from reachable...
|
||||
ReachableAllocNodes.erase(ReachableAllocNodes.begin()+i);
|
||||
AllocNodes.erase(AllocNodes.begin()+i); // Remove node entry
|
||||
--i; // Don't skip the next node.
|
||||
LocalChange = Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Loop over the global nodes, removing nodes that have no edges into them or
|
||||
// out of them.
|
||||
//
|
||||
for (vector<GlobalDSNode*>::iterator I = GlobalNodes.begin();
|
||||
I != GlobalNodes.end(); )
|
||||
if ((*I)->getReferrers().empty()) {
|
||||
GlobalDSNode *GDN = *I;
|
||||
bool NoLinks = true; // Make sure there are no outgoing links...
|
||||
for (unsigned i = 0, e = GDN->getNumLinks(); i != e; ++i)
|
||||
if (!GDN->getLink(i).empty()) {
|
||||
NoLinks = false;
|
||||
break;
|
||||
}
|
||||
if (NoLinks) {
|
||||
delete GDN;
|
||||
I = GlobalNodes.erase(I); // Remove the node...
|
||||
Changed = true;
|
||||
} else {
|
||||
++I;
|
||||
}
|
||||
} else {
|
||||
++I;
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// getEscapingAllocations - Add all allocations that escape the current
|
||||
// function to the specified vector.
|
||||
//
|
||||
void FunctionDSGraph::getEscapingAllocations(vector<AllocDSNode*> &Allocs) {
|
||||
vector<bool> ReachableShadowNodes(ShadowNodes.size());
|
||||
vector<bool> ReachableAllocNodes (AllocNodes.size());
|
||||
|
||||
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
|
||||
|
||||
for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
|
||||
if (ReachableAllocNodes[i])
|
||||
Allocs.push_back(AllocNodes[i]);
|
||||
}
|
||||
|
||||
// getNonEscapingAllocations - Add all allocations that do not escape the
|
||||
// current function to the specified vector.
|
||||
//
|
||||
void FunctionDSGraph::getNonEscapingAllocations(vector<AllocDSNode*> &Allocs) {
|
||||
vector<bool> ReachableShadowNodes(ShadowNodes.size());
|
||||
vector<bool> ReachableAllocNodes (AllocNodes.size());
|
||||
|
||||
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
|
||||
|
||||
for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
|
||||
if (!ReachableAllocNodes[i])
|
||||
Allocs.push_back(AllocNodes[i]);
|
||||
}
|
@ -1,365 +0,0 @@
|
||||
//===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===//
|
||||
//
|
||||
// Build the local datastructure graph for a single method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "FunctionRepBuilder.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
|
||||
// synthesizeNode - Create a new shadow node that is to be linked into this
|
||||
// chain..
|
||||
// FIXME: This should not take a FunctionRepBuilder as an argument!
|
||||
//
|
||||
ShadowDSNode *DSNode::synthesizeNode(const Type *Ty,
|
||||
FunctionRepBuilder *Rep) {
|
||||
// If we are a derived shadow node, defer to our parent to synthesize the node
|
||||
if (ShadowDSNode *Th = dyn_cast<ShadowDSNode>(this))
|
||||
if (Th->getShadowParent())
|
||||
return Th->getShadowParent()->synthesizeNode(Ty, Rep);
|
||||
|
||||
// See if we have already synthesized a node of this type...
|
||||
for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
|
||||
if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
|
||||
|
||||
// No we haven't. Do so now and add it to our list of saved nodes...
|
||||
|
||||
ShadowDSNode *SN = Rep->makeSynthesizedShadow(Ty, this);
|
||||
SynthNodes.push_back(std::make_pair(Ty, SN));
|
||||
|
||||
return SN;
|
||||
}
|
||||
|
||||
ShadowDSNode *FunctionRepBuilder::makeSynthesizedShadow(const Type *Ty,
|
||||
DSNode *Parent) {
|
||||
ShadowDSNode *Result = new ShadowDSNode(Ty, F->getFunction()->getParent(),
|
||||
Parent);
|
||||
ShadowNodes.push_back(Result);
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// visitOperand - If the specified instruction operand is a global value, add
|
||||
// a node for it...
|
||||
//
|
||||
void InitVisitor::visitOperand(Value *V) {
|
||||
if (!Rep->ValueMap.count(V)) // Only process it once...
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
GlobalDSNode *N = new GlobalDSNode(GV);
|
||||
Rep->GlobalNodes.push_back(N);
|
||||
Rep->ValueMap[V].add(N);
|
||||
Rep->addAllUsesToWorkList(GV);
|
||||
|
||||
// FIXME: If the global variable has fields, we should add critical
|
||||
// shadow nodes to represent them!
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// visitCallInst - Create a call node for the callinst, and create as shadow
|
||||
// node if the call returns a pointer value. Check to see if the call node
|
||||
// uses any global variables...
|
||||
//
|
||||
void InitVisitor::visitCallInst(CallInst &CI) {
|
||||
CallDSNode *C = new CallDSNode(&CI);
|
||||
Rep->CallNodes.push_back(C);
|
||||
Rep->CallMap[&CI] = C;
|
||||
|
||||
if (const PointerType *PT = dyn_cast<PointerType>(CI.getType())) {
|
||||
// Create a critical shadow node to represent the memory object that the
|
||||
// return value points to...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
||||
Func->getParent());
|
||||
Rep->ShadowNodes.push_back(Shad);
|
||||
|
||||
// The return value of the function is a pointer to the shadow value
|
||||
// just created...
|
||||
//
|
||||
C->getLink(0).add(Shad);
|
||||
|
||||
// The call instruction returns a pointer to the shadow block...
|
||||
Rep->ValueMap[&CI].add(Shad, &CI);
|
||||
|
||||
// If the call returns a value with pointer type, add all of the users
|
||||
// of the call instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(&CI);
|
||||
}
|
||||
|
||||
// Loop over all of the operands of the call instruction (except the first
|
||||
// one), to look for global variable references...
|
||||
//
|
||||
for_each(CI.op_begin(), CI.op_end(),
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
||||
// visitAllocationInst - Create an allocation node for the allocation. Since
|
||||
// allocation instructions do not take pointer arguments, they cannot refer to
|
||||
// global vars...
|
||||
//
|
||||
void InitVisitor::visitAllocationInst(AllocationInst &AI) {
|
||||
AllocDSNode *N = new AllocDSNode(&AI);
|
||||
Rep->AllocNodes.push_back(N);
|
||||
|
||||
Rep->ValueMap[&AI].add(N, &AI);
|
||||
|
||||
// Add all of the users of the malloc instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(&AI);
|
||||
}
|
||||
|
||||
|
||||
// Visit all other instruction types. Here we just scan, looking for uses of
|
||||
// global variables...
|
||||
//
|
||||
void InitVisitor::visitInstruction(Instruction &I) {
|
||||
for_each(I.op_begin(), I.op_end(),
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
||||
// addAllUsesToWorkList - Add all of the instructions users of the specified
|
||||
// value to the work list for further processing...
|
||||
//
|
||||
void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
|
||||
//cerr << "Adding all uses of " << V << "\n";
|
||||
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
|
||||
Instruction *Inst = cast<Instruction>(*I);
|
||||
// When processing global values, it's possible that the instructions on
|
||||
// the use list are not all in this method. Only add the instructions
|
||||
// that _are_ in this method.
|
||||
//
|
||||
if (Inst->getParent()->getParent() == F->getFunction())
|
||||
// Only let an instruction occur on the work list once...
|
||||
if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
|
||||
WorkList.push_back(Inst);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void FunctionRepBuilder::initializeWorkList(Function *Func) {
|
||||
// Add all of the arguments to the method to the graph and add all users to
|
||||
// the worklists...
|
||||
//
|
||||
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) {
|
||||
// Only process arguments that are of pointer type...
|
||||
if (const PointerType *PT = dyn_cast<PointerType>(I->getType())) {
|
||||
// Add a shadow value for it to represent what it is pointing to and add
|
||||
// this to the value map...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
||||
Func->getParent());
|
||||
ShadowNodes.push_back(Shad);
|
||||
ValueMap[I].add(PointerVal(Shad), I);
|
||||
|
||||
// Make sure that all users of the argument are processed...
|
||||
addAllUsesToWorkList(I);
|
||||
}
|
||||
}
|
||||
|
||||
// Iterate over the instructions in the method. Create nodes for malloc and
|
||||
// call instructions. Add all uses of these to the worklist of instructions
|
||||
// to process.
|
||||
//
|
||||
InitVisitor IV(this, Func);
|
||||
IV.visit(Func);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst &MAI) {
|
||||
unsigned Index = InP.Index;
|
||||
const Type *SrcTy = MAI.getPointerOperand()->getType();
|
||||
|
||||
for (MemAccessInst::const_op_iterator I = MAI.idx_begin(),
|
||||
E = MAI.idx_end(); I != E; ++I)
|
||||
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
|
||||
const StructType *STy = cast<StructType>(SrcTy);
|
||||
unsigned StructIdx = cast<ConstantUInt>(I->get())->getValue();
|
||||
for (unsigned i = 0; i != StructIdx; ++i)
|
||||
Index += countPointerFields(STy->getContainedType(i));
|
||||
|
||||
// Advance SrcTy to be the new element type...
|
||||
SrcTy = STy->getContainedType(StructIdx);
|
||||
} else {
|
||||
// Otherwise, stepping into array or initial pointer, just increment type
|
||||
SrcTy = cast<SequentialType>(SrcTy)->getElementType();
|
||||
}
|
||||
|
||||
return PointerVal(InP.Node, Index);
|
||||
}
|
||||
|
||||
static PointerValSet &getField(const PointerVal &DestPtr) {
|
||||
assert(DestPtr.Node != 0);
|
||||
return DestPtr.Node->getLink(DestPtr.Index);
|
||||
}
|
||||
|
||||
|
||||
// Reprocessing a GEP instruction is the result of the pointer operand
|
||||
// changing. This means that the set of possible values for the GEP
|
||||
// needs to be expanded.
|
||||
//
|
||||
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
||||
PointerValSet &GEPPVS = ValueMap[&GEP]; // PointerValSet to expand
|
||||
|
||||
// Get the input pointer val set...
|
||||
const PointerValSet &SrcPVS = ValueMap[GEP.getOperand(0)];
|
||||
|
||||
bool Changed = false; // Process each input value... propogating it.
|
||||
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
|
||||
// Calculate where the resulting pointer would point based on an
|
||||
// input of 'Val' as the pointer type... and add it to our outgoing
|
||||
// value set. Keep track of whether or not we actually changed
|
||||
// anything.
|
||||
//
|
||||
Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
|
||||
}
|
||||
|
||||
// If our current value set changed, notify all of the users of our
|
||||
// value.
|
||||
//
|
||||
if (Changed) addAllUsesToWorkList(&GEP);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitReturnInst(ReturnInst &RI) {
|
||||
RetNode.add(ValueMap[RI.getOperand(0)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitLoadInst(LoadInst &LI) {
|
||||
// Only loads that return pointers are interesting...
|
||||
const PointerType *DestTy = dyn_cast<PointerType>(LI.getType());
|
||||
if (DestTy == 0) return;
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[LI.getOperand(0)];
|
||||
PointerValSet &LIPVS = ValueMap[&LI];
|
||||
|
||||
bool Changed = false;
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
|
||||
PointerValSet &Field = getField(Ptr);
|
||||
|
||||
if (Field.size()) { // Field loaded wasn't null?
|
||||
Changed |= LIPVS.add(Field);
|
||||
} else {
|
||||
// If we are loading a null field out of a shadow node, we need to
|
||||
// synthesize a new shadow node and link it in...
|
||||
//
|
||||
ShadowDSNode *SynthNode =
|
||||
Ptr.Node->synthesizeNode(DestTy->getElementType(), this);
|
||||
Field.add(SynthNode);
|
||||
|
||||
Changed |= LIPVS.add(Field);
|
||||
}
|
||||
}
|
||||
|
||||
if (Changed) addAllUsesToWorkList(&LI);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitStoreInst(StoreInst &SI) {
|
||||
// The only stores that are interesting are stores the store pointers
|
||||
// into data structures...
|
||||
//
|
||||
if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
|
||||
if (!ValueMap.count(SI.getOperand(0))) return; // Src scalar has no values!
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[SI.getOperand(0)];
|
||||
const PointerValSet &PtrPVS = ValueMap[SI.getOperand(1)];
|
||||
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
const PointerVal &SrcPtr = SrcPVS[si];
|
||||
for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) {
|
||||
PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI);
|
||||
|
||||
#if 0
|
||||
std::cerr << "Setting Dest:\n";
|
||||
Dest.print(std::cerr);
|
||||
std::cerr << "to point to Src:\n";
|
||||
SrcPtr.print(std::cerr);
|
||||
#endif
|
||||
|
||||
// Add SrcPtr into the Dest field...
|
||||
if (getField(Dest).add(SrcPtr)) {
|
||||
// If we modified the dest field, then invalidate everyone that points
|
||||
// to Dest.
|
||||
const std::vector<Value*> &Ptrs = Dest.Node->getPointers();
|
||||
for (unsigned i = 0, e = Ptrs.size(); i != e; ++i)
|
||||
addAllUsesToWorkList(Ptrs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitCallInst(CallInst &CI) {
|
||||
CallDSNode *DSN = CallMap[&CI];
|
||||
unsigned PtrNum = 0;
|
||||
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(CI.getOperand(i)->getType()))
|
||||
DSN->addArgValue(PtrNum++, ValueMap[CI.getOperand(i)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitPHINode(PHINode &PN) {
|
||||
assert(isa<PointerType>(PN.getType()) && "Should only update ptr phis");
|
||||
|
||||
PointerValSet &PN_PVS = ValueMap[&PN];
|
||||
bool Changed = false;
|
||||
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
||||
Changed |= PN_PVS.add(ValueMap[PN.getIncomingValue(i)],
|
||||
PN.getIncomingValue(i));
|
||||
|
||||
if (Changed) addAllUsesToWorkList(&PN);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// FunctionDSGraph constructor - Perform the global analysis to determine
|
||||
// what the data structure usage behavior or a method looks like.
|
||||
//
|
||||
FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) {
|
||||
FunctionRepBuilder Builder(this);
|
||||
AllocNodes = Builder.getAllocNodes();
|
||||
ShadowNodes = Builder.getShadowNodes();
|
||||
GlobalNodes = Builder.getGlobalNodes();
|
||||
CallNodes = Builder.getCallNodes();
|
||||
RetNode = Builder.getRetNode();
|
||||
ValueMap = Builder.getValueMap();
|
||||
|
||||
// Remove all entries in the value map that consist of global values pointing
|
||||
// at things. They can only point to their node, so there is no use keeping
|
||||
// them.
|
||||
//
|
||||
for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
|
||||
E = ValueMap.end(); I != E;)
|
||||
if (isa<GlobalValue>(I->first)) {
|
||||
#if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER
|
||||
I = ValueMap.erase(I);
|
||||
#else
|
||||
ValueMap.erase(I); // This is really lame.
|
||||
I = ValueMap.begin(); // GCC's stdc++ lib doesn't return an it!
|
||||
#endif
|
||||
} else
|
||||
++I;
|
||||
|
||||
bool Changed = true;
|
||||
while (Changed) {
|
||||
// Eliminate shadow nodes that are not distinguishable from some other
|
||||
// node in the graph...
|
||||
//
|
||||
Changed = UnlinkUndistinguishableNodes();
|
||||
|
||||
// Eliminate shadow nodes that are now extraneous due to linking...
|
||||
Changed |= RemoveUnreachableNodes();
|
||||
}
|
||||
}
|
@ -1,135 +0,0 @@
|
||||
//===- FunctionRepBuilder.h - Structures for graph building ------*- C++ -*--=//
|
||||
//
|
||||
// This file defines the FunctionRepBuilder and InitVisitor classes that are
|
||||
// used to build the local data structure graph for a method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef DATA_STRUCTURE_METHOD_REP_BUILDER_H
|
||||
#define DATA_STRUCTURE_METHOD_REP_BUILDER_H
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
|
||||
// DEBUG_DATA_STRUCTURE_CONSTRUCTION - Define this to 1 if you want debug output
|
||||
//#define DEBUG_DATA_STRUCTURE_CONSTRUCTION 1
|
||||
|
||||
class FunctionRepBuilder;
|
||||
|
||||
// InitVisitor - Used to initialize the worklists for data structure analysis.
|
||||
// Iterate over the instructions in the method, creating nodes for malloc and
|
||||
// call instructions. Add all uses of these to the worklist of instructions
|
||||
// to process.
|
||||
//
|
||||
class InitVisitor : public InstVisitor<InitVisitor> {
|
||||
FunctionRepBuilder *Rep;
|
||||
Function *Func;
|
||||
public:
|
||||
InitVisitor(FunctionRepBuilder *R, Function *F) : Rep(R), Func(F) {}
|
||||
|
||||
void visitCallInst(CallInst &CI);
|
||||
void visitAllocationInst(AllocationInst &AI);
|
||||
void visitInstruction(Instruction &I);
|
||||
|
||||
// visitOperand - If the specified instruction operand is a global value, add
|
||||
// a node for it...
|
||||
//
|
||||
void visitOperand(Value *V);
|
||||
};
|
||||
|
||||
|
||||
// FunctionRepBuilder - This builder object creates the datastructure graph for
|
||||
// a method.
|
||||
//
|
||||
class FunctionRepBuilder : InstVisitor<FunctionRepBuilder> {
|
||||
friend class InitVisitor;
|
||||
FunctionDSGraph *F;
|
||||
PointerValSet RetNode;
|
||||
|
||||
// ValueMap - Mapping between values we are processing and the possible
|
||||
// datastructures that they may point to...
|
||||
std::map<Value*, PointerValSet> ValueMap;
|
||||
|
||||
// CallMap - Keep track of which call nodes correspond to which call insns.
|
||||
// The reverse mapping is stored in the CallDSNodes themselves.
|
||||
//
|
||||
std::map<CallInst*, CallDSNode*> CallMap;
|
||||
|
||||
// Worklist - Vector of (pointer typed) instructions to process still...
|
||||
std::vector<Instruction *> WorkList;
|
||||
|
||||
// Nodes - Keep track of all of the resultant nodes, because there may not
|
||||
// be edges connecting these to anything.
|
||||
//
|
||||
std::vector<AllocDSNode*> AllocNodes;
|
||||
std::vector<ShadowDSNode*> ShadowNodes;
|
||||
std::vector<GlobalDSNode*> GlobalNodes;
|
||||
std::vector<CallDSNode*> CallNodes;
|
||||
|
||||
// addAllUsesToWorkList - Add all of the instructions users of the specified
|
||||
// value to the work list for further processing...
|
||||
//
|
||||
void addAllUsesToWorkList(Value *V);
|
||||
|
||||
public:
|
||||
FunctionRepBuilder(FunctionDSGraph *f) : F(f) {
|
||||
initializeWorkList(F->getFunction());
|
||||
processWorkList();
|
||||
}
|
||||
|
||||
const std::vector<AllocDSNode*> &getAllocNodes() const { return AllocNodes; }
|
||||
const std::vector<ShadowDSNode*> &getShadowNodes() const {return ShadowNodes;}
|
||||
const std::vector<GlobalDSNode*> &getGlobalNodes() const {return GlobalNodes;}
|
||||
const std::vector<CallDSNode*> &getCallNodes() const { return CallNodes; }
|
||||
|
||||
|
||||
ShadowDSNode *makeSynthesizedShadow(const Type *Ty, DSNode *Parent);
|
||||
|
||||
const PointerValSet &getRetNode() const { return RetNode; }
|
||||
|
||||
const std::map<Value*, PointerValSet> &getValueMap() const { return ValueMap; }
|
||||
private:
|
||||
static PointerVal getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst &MAI);
|
||||
|
||||
void initializeWorkList(Function *Func);
|
||||
void processWorkList() {
|
||||
// While the worklist still has instructions to process, process them!
|
||||
while (!WorkList.empty()) {
|
||||
Instruction *I = WorkList.back(); WorkList.pop_back();
|
||||
|
||||
#ifdef DEBUG_DATA_STRUCTURE_CONSTRUCTION
|
||||
std::cerr << "Processing worklist inst: " << I;
|
||||
#endif
|
||||
|
||||
visit(*I); // Dispatch to a visitXXX function based on instruction type...
|
||||
#ifdef DEBUG_DATA_STRUCTURE_CONSTRUCTION
|
||||
if (I->hasName() && ValueMap.count(I)) {
|
||||
std::cerr << "Inst %" << I->getName() << " value is:\n";
|
||||
ValueMap[I].print(std::cerr);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Functions used to process the worklist of instructions...
|
||||
//
|
||||
// Allow the visitor base class to invoke these methods...
|
||||
friend class InstVisitor<FunctionRepBuilder>;
|
||||
|
||||
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
||||
void visitReturnInst(ReturnInst &RI);
|
||||
void visitLoadInst(LoadInst &LI);
|
||||
void visitStoreInst(StoreInst &SI);
|
||||
void visitCallInst(CallInst &CI);
|
||||
void visitPHINode(PHINode &PN);
|
||||
void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored
|
||||
void visitFreeInst(FreeInst &FI) {} // Ignore free instructions
|
||||
void visitInstruction(Instruction &I) {
|
||||
std::cerr << "\n\n\nUNKNOWN INSTRUCTION type: " << I << "\n\n\n";
|
||||
assert(0 && "Cannot proceed");
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
@ -1,470 +0,0 @@
|
||||
//===- NodeImpl.cpp - Implement the data structure analysis nodes ---------===//
|
||||
//
|
||||
// Implement the LLVM data structure analysis library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/DataStructureGraph.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
using std::map;
|
||||
using std::string;
|
||||
|
||||
bool AllocDSNode::isEquivalentTo(DSNode *Node) const {
|
||||
if (AllocDSNode *N = dyn_cast<AllocDSNode>(Node))
|
||||
return getType() == Node->getType();
|
||||
//&& isAllocaNode() == N->isAllocaNode();
|
||||
return false;
|
||||
}
|
||||
|
||||
void AllocDSNode::mergeInto(DSNode *Node) const {
|
||||
// Make sure the merged node is variable size if this node is var size
|
||||
AllocDSNode *N = cast<AllocDSNode>(Node);
|
||||
N->isVarSize |= isVarSize;
|
||||
}
|
||||
|
||||
bool GlobalDSNode::isEquivalentTo(DSNode *Node) const {
|
||||
if (const GlobalDSNode *G = dyn_cast<GlobalDSNode>(Node)) {
|
||||
if (G->Val != Val) return false;
|
||||
|
||||
// Check that the outgoing links are identical...
|
||||
assert(getNumLinks() == G->getNumLinks() && "Not identical shape?");
|
||||
for (unsigned i = 0, e = getNumLinks(); i != e; ++i)
|
||||
if (getLink(i) != G->getLink(i)) // Check links
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Call node equivalency - Two call nodes are identical if all of the outgoing
|
||||
// links are the same, AND if all of the incoming links are identical.
|
||||
//
|
||||
bool CallDSNode::isEquivalentTo(DSNode *Node) const {
|
||||
if (CallDSNode *C = dyn_cast<CallDSNode>(Node)) {
|
||||
if (getReferrers().size() != C->getReferrers().size() ||
|
||||
C->getType() != getType())
|
||||
return false; // Quick check...
|
||||
|
||||
// Check that the outgoing links are identical...
|
||||
assert(getNumLinks() == C->getNumLinks() && "Not identical shape?");
|
||||
for (unsigned i = 0, e = getNumLinks(); i != e; ++i)
|
||||
if (getLink(i) != C->getLink(i)) // Check links
|
||||
return false;
|
||||
|
||||
|
||||
std::vector<PointerValSet*> Refs1 = C->getReferrers();
|
||||
std::vector<PointerValSet*> Refs2 = getReferrers();
|
||||
|
||||
sort(Refs1.begin(), Refs1.end());
|
||||
sort(Refs2.begin(), Refs2.end());
|
||||
if (Refs1 != Refs2) return false; // Incoming edges different?
|
||||
|
||||
// Check that all outgoing links are the same...
|
||||
return C->ArgLinks == ArgLinks; // Check that the arguments are identical
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// NodesAreEquivalent - Check to see if the nodes are equivalent in all ways
|
||||
// except node type. Since we know N1 is a shadow node, N2 is allowed to be
|
||||
// any type.
|
||||
//
|
||||
bool ShadowDSNode::isEquivalentTo(DSNode *Node) const {
|
||||
return getType() == Node->getType();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DSNode Class Implementation
|
||||
//
|
||||
|
||||
static void MapPVS(PointerValSet &PVSOut, const PointerValSet &PVSIn,
|
||||
map<const DSNode*, DSNode*> &NodeMap, bool ReinitOk = false){
|
||||
assert((ReinitOk || PVSOut.empty()) && "Value set already initialized!");
|
||||
|
||||
for (unsigned i = 0, e = PVSIn.size(); i != e; ++i)
|
||||
PVSOut.add(PointerVal(NodeMap[PVSIn[i].Node], PVSIn[i].Index));
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned countPointerFields(const Type *Ty) {
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::StructTyID: {
|
||||
const StructType *ST = cast<StructType>(Ty);
|
||||
unsigned Sum = 0;
|
||||
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i)
|
||||
Sum += countPointerFields(ST->getContainedType(i));
|
||||
|
||||
return Sum;
|
||||
}
|
||||
|
||||
case Type::ArrayTyID:
|
||||
// All array elements are folded together...
|
||||
return countPointerFields(cast<ArrayType>(Ty)->getElementType());
|
||||
|
||||
case Type::PointerTyID:
|
||||
return 1;
|
||||
|
||||
default: // Some other type, just treat it like a scalar
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
|
||||
// Create field entries for all of the values in this type...
|
||||
FieldLinks.resize(countPointerFields(getType()));
|
||||
}
|
||||
|
||||
void DSNode::removeReferrer(PointerValSet *PVS) {
|
||||
std::vector<PointerValSet*>::iterator I = std::find(Referrers.begin(),
|
||||
Referrers.end(), PVS);
|
||||
assert(I != Referrers.end() && "PVS not pointing to node!");
|
||||
Referrers.erase(I);
|
||||
}
|
||||
|
||||
|
||||
// removeAllIncomingEdges - Erase all edges in the graph that point to this node
|
||||
void DSNode::removeAllIncomingEdges() {
|
||||
while (!Referrers.empty())
|
||||
Referrers.back()->removePointerTo(this);
|
||||
}
|
||||
|
||||
|
||||
static void replaceIn(std::string &S, char From, const std::string &To) {
|
||||
for (unsigned i = 0; i < S.size(); )
|
||||
if (S[i] == From) {
|
||||
S.replace(S.begin()+i, S.begin()+i+1,
|
||||
To.begin(), To.end());
|
||||
i += To.size();
|
||||
} else {
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
static void writeEdges(std::ostream &O, const void *SrcNode,
|
||||
const char *SrcNodePortName, int SrcNodeIdx,
|
||||
const PointerValSet &VS, const string &EdgeAttr = "") {
|
||||
for (unsigned j = 0, je = VS.size(); j != je; ++j) {
|
||||
O << "\t\tNode" << SrcNode << SrcNodePortName;
|
||||
if (SrcNodeIdx != -1) O << SrcNodeIdx;
|
||||
|
||||
O << " -> Node" << VS[j].Node;
|
||||
if (VS[j].Index)
|
||||
O << ":g" << VS[j].Index;
|
||||
|
||||
if (!EdgeAttr.empty())
|
||||
O << "[" << EdgeAttr << "]";
|
||||
O << ";\n";
|
||||
}
|
||||
}
|
||||
|
||||
static string escapeLabel(const string &In) {
|
||||
string Label(In);
|
||||
replaceIn(Label, '\\', "\\\\\\\\"); // Escape caption...
|
||||
replaceIn(Label, ' ', "\\ ");
|
||||
replaceIn(Label, '{', "\\{");
|
||||
replaceIn(Label, '}', "\\}");
|
||||
return Label;
|
||||
}
|
||||
|
||||
void DSNode::dump() const { print(std::cerr); }
|
||||
|
||||
void DSNode::print(std::ostream &O) const {
|
||||
string Caption = escapeLabel(getCaption());
|
||||
|
||||
O << "\t\tNode" << (void*)this << " [ label =\"{" << Caption;
|
||||
|
||||
const std::vector<PointerValSet> *Links = getAuxLinks();
|
||||
if (Links && !Links->empty()) {
|
||||
O << "|{";
|
||||
for (unsigned i = 0; i < Links->size(); ++i) {
|
||||
if (i) O << "|";
|
||||
O << "<f" << i << ">";
|
||||
}
|
||||
O << "}";
|
||||
}
|
||||
|
||||
if (!FieldLinks.empty()) {
|
||||
O << "|{";
|
||||
for (unsigned i = 0; i < FieldLinks.size(); ++i) {
|
||||
if (i) O << "|";
|
||||
O << "<g" << i << ">";
|
||||
}
|
||||
O << "}";
|
||||
}
|
||||
O << "}\"];\n";
|
||||
|
||||
if (Links)
|
||||
for (unsigned i = 0; i < Links->size(); ++i)
|
||||
writeEdges(O, this, ":f", i, (*Links)[i]);
|
||||
for (unsigned i = 0; i < FieldLinks.size(); ++i)
|
||||
writeEdges(O, this, ":g", i, FieldLinks[i]);
|
||||
}
|
||||
|
||||
void DSNode::mapNode(map<const DSNode*, DSNode*> &NodeMap, const DSNode *Old) {
|
||||
assert(FieldLinks.size() == Old->FieldLinks.size() &&
|
||||
"Cloned nodes do not have the same number of links!");
|
||||
for (unsigned j = 0, je = FieldLinks.size(); j != je; ++j)
|
||||
MapPVS(FieldLinks[j], Old->FieldLinks[j], NodeMap);
|
||||
|
||||
// Map our SynthNodes...
|
||||
assert(SynthNodes.empty() && "Synthnodes already mapped?");
|
||||
SynthNodes.reserve(Old->SynthNodes.size());
|
||||
for (unsigned i = 0, e = Old->SynthNodes.size(); i != e; ++i)
|
||||
SynthNodes.push_back(std::make_pair(Old->SynthNodes[i].first,
|
||||
(ShadowDSNode*)NodeMap[Old->SynthNodes[i].second]));
|
||||
}
|
||||
|
||||
AllocDSNode::AllocDSNode(AllocationInst *V, bool isvarsize)
|
||||
: DSNode(NewNode, V->getType()->getElementType()), Allocation(V) {
|
||||
|
||||
// Is variable size if incoming flag says so, or if allocation is var size
|
||||
// already.
|
||||
isVarSize = isvarsize || !isa<Constant>(V->getArraySize());
|
||||
}
|
||||
|
||||
bool AllocDSNode::isAllocaNode() const {
|
||||
return isa<AllocaInst>(Allocation);
|
||||
}
|
||||
|
||||
|
||||
string AllocDSNode::getCaption() const {
|
||||
std::stringstream OS;
|
||||
OS << (isMallocNode() ? "new " : "alloca ");
|
||||
|
||||
WriteTypeSymbolic(OS, getType(),
|
||||
Allocation->getParent()->getParent()->getParent());
|
||||
if (isVarSize)
|
||||
OS << "[ ]";
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
GlobalDSNode::GlobalDSNode(GlobalValue *V)
|
||||
: DSNode(GlobalNode, V->getType()->getElementType()), Val(V) {
|
||||
}
|
||||
|
||||
string GlobalDSNode::getCaption() const {
|
||||
std::stringstream OS;
|
||||
if (isa<Function>(Val))
|
||||
OS << "fn ";
|
||||
else
|
||||
OS << "global ";
|
||||
|
||||
WriteTypeSymbolic(OS, getType(), Val->getParent());
|
||||
return OS.str() + " %" + Val->getName();
|
||||
}
|
||||
|
||||
|
||||
ShadowDSNode::ShadowDSNode(const Type *Ty, Module *M) : DSNode(ShadowNode, Ty) {
|
||||
Mod = M;
|
||||
ShadowParent = 0;
|
||||
}
|
||||
|
||||
ShadowDSNode::ShadowDSNode(const Type *Ty, Module *M, DSNode *ShadParent)
|
||||
: DSNode(ShadowNode, Ty) {
|
||||
Mod = M;
|
||||
ShadowParent = ShadParent;
|
||||
}
|
||||
|
||||
std::string ShadowDSNode::getCaption() const {
|
||||
std::stringstream OS;
|
||||
OS << "shadow ";
|
||||
WriteTypeSymbolic(OS, getType(), Mod);
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
CallDSNode::CallDSNode(CallInst *ci) : DSNode(CallNode, ci->getType()), CI(ci) {
|
||||
unsigned NumPtrs = 0;
|
||||
for (unsigned i = 0, e = ci->getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(ci->getOperand(i)->getType()))
|
||||
NumPtrs++;
|
||||
ArgLinks.resize(NumPtrs);
|
||||
}
|
||||
|
||||
string CallDSNode::getCaption() const {
|
||||
std::stringstream OS;
|
||||
if (const Function *CM = CI->getCalledFunction())
|
||||
OS << "call " << CM->getName();
|
||||
else
|
||||
OS << "call <indirect>";
|
||||
OS << ": ";
|
||||
WriteTypeSymbolic(OS, getType(),
|
||||
CI->getParent()->getParent()->getParent());
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
void CallDSNode::mapNode(map<const DSNode*, DSNode*> &NodeMap,
|
||||
const DSNode *O) {
|
||||
const CallDSNode *Old = cast<CallDSNode>(O);
|
||||
DSNode::mapNode(NodeMap, Old); // Map base portions first...
|
||||
|
||||
assert(ArgLinks.size() == Old->ArgLinks.size() && "# Arguments changed!?");
|
||||
for (unsigned i = 0, e = Old->ArgLinks.size(); i != e; ++i)
|
||||
MapPVS(ArgLinks[i], Old->ArgLinks[i], NodeMap);
|
||||
}
|
||||
|
||||
void FunctionDSGraph::printFunction(std::ostream &O,
|
||||
const char *Label) const {
|
||||
O << "\tsubgraph cluster_" << Label << "_Function" << (void*)this << " {\n";
|
||||
O << "\t\tlabel=\"" << Label << " Function\\ " << Func->getName() << "\";\n";
|
||||
for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
|
||||
AllocNodes[i]->print(O);
|
||||
for (unsigned i = 0, e = ShadowNodes.size(); i != e; ++i)
|
||||
ShadowNodes[i]->print(O);
|
||||
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
|
||||
GlobalNodes[i]->print(O);
|
||||
for (unsigned i = 0, e = CallNodes.size(); i != e; ++i)
|
||||
CallNodes[i]->print(O);
|
||||
|
||||
if (RetNode.size()) {
|
||||
O << "\t\tNode" << (void*)this << Label
|
||||
<< " [shape=\"ellipse\", label=\"Returns\"];\n";
|
||||
writeEdges(O, this, Label, -1, RetNode);
|
||||
}
|
||||
|
||||
O << "\n";
|
||||
for (std::map<Value*, PointerValSet>::const_iterator I = ValueMap.begin(),
|
||||
E = ValueMap.end(); I != E; ++I) {
|
||||
if (I->second.size()) { // Only output nodes with edges...
|
||||
std::stringstream OS;
|
||||
WriteTypeSymbolic(OS, I->first->getType(), Func->getParent());
|
||||
|
||||
// Create node for I->first
|
||||
O << "\t\tNode" << (void*)I->first << Label << " [shape=\""
|
||||
<< (isa<Argument>(I->first) ? "ellipse" : "box") << "\", label=\""
|
||||
<< escapeLabel(OS.str()) << "\\n%" << escapeLabel(I->first->getName())
|
||||
<< "\",fontsize=\"12.0\",color=\"gray70\"];\n";
|
||||
|
||||
// add edges from I->first to all pointers in I->second
|
||||
writeEdges(O, I->first, Label, -1, I->second,
|
||||
"weight=\"0.9\",color=\"gray70\"");
|
||||
}
|
||||
}
|
||||
|
||||
O << "\t}\n";
|
||||
}
|
||||
|
||||
// Copy constructor - Since we copy the nodes over, we have to be sure to go
|
||||
// through and fix pointers to point into the new graph instead of into the old
|
||||
// graph...
|
||||
//
|
||||
FunctionDSGraph::FunctionDSGraph(const FunctionDSGraph &DSG) : Func(DSG.Func) {
|
||||
std::vector<PointerValSet> Args;
|
||||
RetNode = cloneFunctionIntoSelf(DSG, true, Args);
|
||||
}
|
||||
|
||||
|
||||
// cloneFunctionIntoSelf - Clone the specified method graph into the current
|
||||
// method graph, returning the Return's set of the graph. If ValueMap is set
|
||||
// to true, the ValueMap of the function is cloned into this function as well
|
||||
// as the data structure graph itself. Regardless, the arguments value sets
|
||||
// of DSG are copied into Args.
|
||||
//
|
||||
PointerValSet FunctionDSGraph::cloneFunctionIntoSelf(const FunctionDSGraph &DSG,
|
||||
bool CloneValueMap,
|
||||
std::vector<PointerValSet> &Args) {
|
||||
map<const DSNode*, DSNode*> NodeMap; // Map from old graph to new graph...
|
||||
unsigned StartAllocSize = AllocNodes.size();
|
||||
AllocNodes.reserve(StartAllocSize+DSG.AllocNodes.size());
|
||||
unsigned StartShadowSize = ShadowNodes.size();
|
||||
ShadowNodes.reserve(StartShadowSize+DSG.ShadowNodes.size());
|
||||
unsigned StartGlobalSize = GlobalNodes.size();
|
||||
GlobalNodes.reserve(StartGlobalSize+DSG.GlobalNodes.size());
|
||||
unsigned StartCallSize = CallNodes.size();
|
||||
CallNodes.reserve(StartCallSize+DSG.CallNodes.size());
|
||||
|
||||
// Clone all of the alloc nodes similarly...
|
||||
for (unsigned i = 0, e = DSG.AllocNodes.size(); i != e; ++i) {
|
||||
AllocDSNode *New = cast<AllocDSNode>(DSG.AllocNodes[i]->clone());
|
||||
NodeMap[DSG.AllocNodes[i]] = New;
|
||||
AllocNodes.push_back(New);
|
||||
}
|
||||
|
||||
// Clone all of the shadow nodes similarly...
|
||||
for (unsigned i = 0, e = DSG.ShadowNodes.size(); i != e; ++i) {
|
||||
ShadowDSNode *New = cast<ShadowDSNode>(DSG.ShadowNodes[i]->clone());
|
||||
NodeMap[DSG.ShadowNodes[i]] = New;
|
||||
ShadowNodes.push_back(New);
|
||||
}
|
||||
|
||||
// Clone all of the global nodes...
|
||||
for (unsigned i = 0, e = DSG.GlobalNodes.size(); i != e; ++i) {
|
||||
GlobalDSNode *New = cast<GlobalDSNode>(DSG.GlobalNodes[i]->clone());
|
||||
NodeMap[DSG.GlobalNodes[i]] = New;
|
||||
GlobalNodes.push_back(New);
|
||||
}
|
||||
|
||||
// Clone all of the call nodes...
|
||||
for (unsigned i = 0, e = DSG.CallNodes.size(); i != e; ++i) {
|
||||
CallDSNode *New = cast<CallDSNode>(DSG.CallNodes[i]->clone());
|
||||
NodeMap[DSG.CallNodes[i]] = New;
|
||||
CallNodes.push_back(New);
|
||||
}
|
||||
|
||||
// Convert all of the links over in the nodes now that the map has been filled
|
||||
// in all the way...
|
||||
//
|
||||
for (unsigned i = 0, e = DSG.AllocNodes.size(); i != e; ++i)
|
||||
AllocNodes[i+StartAllocSize]->mapNode(NodeMap, DSG.AllocNodes[i]);
|
||||
for (unsigned i = 0, e = DSG.ShadowNodes.size(); i != e; ++i)
|
||||
ShadowNodes[i+StartShadowSize]->mapNode(NodeMap, DSG.ShadowNodes[i]);
|
||||
for (unsigned i = 0, e = DSG.GlobalNodes.size(); i != e; ++i)
|
||||
GlobalNodes[i+StartGlobalSize]->mapNode(NodeMap, DSG.GlobalNodes[i]);
|
||||
for (unsigned i = 0, e = DSG.CallNodes.size(); i != e; ++i)
|
||||
CallNodes[i+StartCallSize]->mapNode(NodeMap, DSG.CallNodes[i]);
|
||||
|
||||
// Convert over the arguments...
|
||||
Function *OF = DSG.getFunction();
|
||||
for (Function::aiterator I = OF->abegin(), E = OF->aend(); I != E; ++I)
|
||||
if (isa<PointerType>(I->getType())) {
|
||||
PointerValSet ArgPVS;
|
||||
assert(DSG.getValueMap().find(I) != DSG.getValueMap().end());
|
||||
MapPVS(ArgPVS, DSG.getValueMap().find(I)->second, NodeMap);
|
||||
assert(!ArgPVS.empty() && "Argument has no links!");
|
||||
Args.push_back(ArgPVS);
|
||||
}
|
||||
|
||||
|
||||
if (CloneValueMap) {
|
||||
// Convert value map... the values themselves stay the same, just the nodes
|
||||
// have to change...
|
||||
//
|
||||
for (std::map<Value*,PointerValSet>::const_iterator I =DSG.ValueMap.begin(),
|
||||
E = DSG.ValueMap.end(); I != E; ++I)
|
||||
MapPVS(ValueMap[I->first], I->second, NodeMap, true);
|
||||
}
|
||||
|
||||
// Convert over return node...
|
||||
PointerValSet RetVals;
|
||||
MapPVS(RetVals, DSG.RetNode, NodeMap);
|
||||
return RetVals;
|
||||
}
|
||||
|
||||
|
||||
FunctionDSGraph::~FunctionDSGraph() {
|
||||
RetNode.clear();
|
||||
ValueMap.clear();
|
||||
for_each(AllocNodes.begin(), AllocNodes.end(),
|
||||
std::mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(ShadowNodes.begin(), ShadowNodes.end(),
|
||||
std::mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(GlobalNodes.begin(), GlobalNodes.end(),
|
||||
std::mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(CallNodes.begin(), CallNodes.end(),
|
||||
std::mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(AllocNodes.begin(), AllocNodes.end(), deleter<DSNode>);
|
||||
for_each(ShadowNodes.begin(), ShadowNodes.end(), deleter<DSNode>);
|
||||
for_each(GlobalNodes.begin(), GlobalNodes.end(), deleter<DSNode>);
|
||||
for_each(CallNodes.begin(), CallNodes.end(), deleter<DSNode>);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user