Implement global variables. Struct and Pointer initializers are not implemented yet though

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@818 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-10-15 05:51:48 +00:00
parent 8d2de8a82c
commit 2e42d3a306
6 changed files with 254 additions and 43 deletions

View File

@ -14,6 +14,109 @@
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/GlobalVariable.h"
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
static TargetData TD("lli Interpreter");
//===----------------------------------------------------------------------===//
// Annotation Wrangling code
//===----------------------------------------------------------------------===//
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID,
&MethodInfo::Create);
AnnotationManager::registerAnnotationFactory(GlobalAddressAID,
&GlobalAddress::Create);
}
// InitializeMemory - Recursive function to apply a ConstPool value into the
// specified memory location...
//
static void InitializeMemory(ConstPoolVal *Init, char *Addr) {
#define INITIALIZE_MEMORY(TYID, CLASS, TY) \
case Type::TYID##TyID: { \
TY Tmp = cast<CLASS>(Init)->getValue(); \
memcpy(Addr, &Tmp, sizeof(TY)); \
} return
switch (Init->getType()->getPrimitiveID()) {
INITIALIZE_MEMORY(Bool , ConstPoolBool, bool);
INITIALIZE_MEMORY(UByte , ConstPoolUInt, unsigned char);
INITIALIZE_MEMORY(SByte , ConstPoolSInt, signed char);
INITIALIZE_MEMORY(UShort , ConstPoolUInt, unsigned short);
INITIALIZE_MEMORY(Short , ConstPoolSInt, signed short);
INITIALIZE_MEMORY(UInt , ConstPoolUInt, unsigned int);
INITIALIZE_MEMORY(Int , ConstPoolSInt, signed int);
INITIALIZE_MEMORY(ULong , ConstPoolUInt, uint64_t);
INITIALIZE_MEMORY(Long , ConstPoolSInt, int64_t);
INITIALIZE_MEMORY(Float , ConstPoolFP , float);
INITIALIZE_MEMORY(Double , ConstPoolFP , double);
#undef INITIALIZE_MEMORY
case Type::ArrayTyID: {
ConstPoolArray *CPA = cast<ConstPoolArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<ConstPoolVal>(Val[i].get()), Addr+i*ElementSize);
return;
}
// TODO: Struct and Pointer!
case Type::StructTyID:
case Type::PointerTyID:
default:
cout << "Bad Type: " << Init->getType()->getDescription() << endl;
assert(0 && "Unknown constant type to initialize memory with!");
}
}
Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
assert(AID == GlobalAddressAID);
// This annotation will only be created on GlobalValue objects...
GlobalValue *GVal = cast<GlobalValue>((Value*)O);
if (isa<Method>(GVal)) {
// The GlobalAddress object for a method is just a pointer to method itself.
// Don't delete it when the annotation is gone though!
return new GlobalAddress(GVal, false);
}
// Handle the case of a global variable...
assert(isa<GlobalVariable>(GVal) &&
"Global value found that isn't a method or global variable!");
GlobalVariable *GV = cast<GlobalVariable>(GVal);
// First off, we must allocate space for the global variable to point at...
const Type *Ty = GV->getType()->getValueType(); // Type to be allocated
unsigned NumElements = 1;
if (isa<ArrayType>(Ty) && cast<ArrayType>(Ty)->isUnsized()) {
assert(GV->hasInitializer() && "Const val must have an initializer!");
// Allocating a unsized array type?
Ty = cast<const ArrayType>(Ty)->getElementType(); // Get the actual type...
// Get the number of elements being allocated by the array...
NumElements =cast<ConstPoolArray>(GV->getInitializer())->getValues().size();
}
// Allocate enough memory to hold the type...
void *Addr = malloc(NumElements * TD.getTypeSize(Ty));
assert(Addr != 0 && "Null pointer returned by malloc!");
// Initialize the memory if there is an initializer...
if (GV->hasInitializer())
InitializeMemory(GV->getInitializer(), (char*)Addr);
return new GlobalAddress(Addr, true); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Value Manipulation code
//===----------------------------------------------------------------------===//
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
@ -22,7 +125,7 @@ static unsigned getOperandSlot(Value *V) {
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = ((CLASS*)CPV)->getValue(); break
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(CPV)->getValue(); break
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(V)) {
@ -37,10 +140,26 @@ static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
GET_CONST_VAL(Int , ConstPoolSInt);
GET_CONST_VAL(Float , ConstPoolFP);
GET_CONST_VAL(Double , ConstPoolFP);
case Type::PointerTyID:
if (isa<ConstPoolPointerNull>(CPV)) {
Result.PointerVal = 0;
} else if (ConstPoolPointerReference *CPR =
dyn_cast<ConstPoolPointerReference>(CPV)) {
assert(0 && "Not implemented!");
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl;
}
return Result;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalAddress *Address =
(GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID);
GenericValue Result;
Result.PointerVal = (GenericValue*)Address->Ptr;
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
return SF.Values[TyP][getOperandSlot(V)];
@ -48,7 +167,11 @@ static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
}
static void printOperandInfo(Value *V, ExecutionContext &SF) {
if (!isa<ConstPoolVal>(V)) {
if (isa<ConstPoolVal>(V)) {
cout << "Constant Pool Value\n";
} else if (isa<GlobalValue>(V)) {
cout << "Global Value\n";
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned Slot = getOperandSlot(V);
cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
@ -294,7 +417,7 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
if (RetTy) { // Nonvoid return type?
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
print(RetTy, Result);
cout << endl;
if (RetTy->isIntegral())
@ -319,7 +442,7 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
// instruction.
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
print(RetTy, Result);
cout << endl;
}
}
@ -341,11 +464,6 @@ void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
static TargetData TD("lli Interpreter");
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType()->getValueType(); // Type to be allocated
unsigned NumElements = 1;
@ -367,7 +485,7 @@ void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
SetValue(I, Result, SF);
if (I->getOpcode() == Instruction::Alloca) {
// Keep track to free it later...
// TODO: FIXME: alloca should keep track of memory to free it later...
}
}
@ -602,10 +720,6 @@ unsigned MethodInfo::getValueSlot(const Value *V) {
}
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID, CreateMethodInfo);
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified method...
//
@ -703,9 +817,6 @@ void Interpreter::stepInstruction() { // Do the 'step' command
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
@ -746,7 +857,6 @@ void Interpreter::run() {
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
@ -787,8 +897,6 @@ void Interpreter::printCurrentInstruction() {
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
cout << Ty << " ";
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID: cout << V.SByteVal; break;
@ -806,15 +914,20 @@ void Interpreter::printValue(const Type *Ty, GenericValue V) {
}
}
void Interpreter::printValue(const string &Name) {
void Interpreter::print(const Type *Ty, GenericValue V) {
cout << Ty << " ";
printValue(Ty, V);
}
void Interpreter::print(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Method *M = dyn_cast<const Method>(PickedVal)) {
cout << M; // Print the method
} else { // Otherwise there should be an annotation for the slot#
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
}
@ -825,8 +938,8 @@ void Interpreter::infoValue(const string &Name) {
if (!PickedVal) return;
cout << "Value: ";
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
printOperandInfo(PickedVal, ECStack[CurFrame]);
}

View File

@ -25,20 +25,19 @@ struct MethodInfo : public Annotation {
MethodInfo(Method *M);
vector<unsigned> NumPlaneElements;
// Create - Factory function to allow MethodInfo annotations to be
// created on demand.
//
static Annotation *Create(AnnotationID AID, const Annotable *O, void *) {
assert(AID == MethodInfoAID);
return new MethodInfo(cast<Method>((Value*)O)); // Simply invoke the ctor
}
private:
unsigned getValueSlot(const Value *V);
};
// CreateMethodInfo - Factory function to allow MethodInfo annotations to be
// created on demand.
//
inline static Annotation *CreateMethodInfo(AnnotationID AID, const Annotable *O,
void *) {
assert(AID == MethodInfoAID);
return new MethodInfo((Method*)O); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Support for the SlotNumber annotation
//===----------------------------------------------------------------------===//
@ -89,4 +88,32 @@ static AnnotationID BreakpointAID(
AnnotationManager::getID("Interpreter::Breakpoint"));
// Just use an Annotation directly, Breakpoint is currently just a marker
//===----------------------------------------------------------------------===//
// Support for the GlobalAddress annotation
//===----------------------------------------------------------------------===//
// This annotation (attached only to GlobalValue objects) is used to hold the
// address of the chunk of memory that represents a global value. For Method's,
// this pointer is the Method object pointer that represents it. For global
// variables, this is the dynamically allocated (and potentially initialized)
// chunk of memory for the global. This annotation is created on demand.
//
static AnnotationID GlobalAddressAID(
AnnotationManager::getID("Interpreter::GlobalAddress"));
struct GlobalAddress : public Annotation {
void *Ptr; // The pointer itself
bool Delete; // Should I delete them memory on destruction?
GlobalAddress(void *ptr, bool d) : Annotation(GlobalAddressAID), Ptr(ptr),
Delete(d) {}
~GlobalAddress() { if (Delete) free(Ptr); }
// Create - Factory function to allow GlobalAddress annotations to be
// created on demand.
//
static Annotation *Create(AnnotationID AID, const Annotable *O, void *);
};
#endif

View File

@ -91,10 +91,32 @@ void Interpreter::callExternalMethod(Method *M,
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
// Implement void printstr([ubyte {x N}] *)
GenericValue lle_VP_printstr(MethodType *M, const vector<GenericValue> &ArgVal){
assert(ArgVal.size() == 1 && "printstr only takes one argument!");
cout << (char*)ArgVal[0].PointerVal;
return GenericValue();
}
// Implement 'void print(X)' for every type...
GenericValue lle_X_print(MethodType *M, const vector<GenericValue> &ArgVals) {
assert(ArgVals.size() == 1 && "generic print only takes one argument!");
Interpreter::printValue(M->getParamTypes()[0], ArgVals[0]);
Interpreter::print(M->getParamTypes()[0], ArgVals[0]);
return GenericValue();
}
// Implement 'void printVal(X)' for every type...
GenericValue lle_X_printVal(MethodType *M, const vector<GenericValue> &ArgVal) {
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
// Specialize print([ubyte {x N} ] *)
if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get()))
if (const ArrayType *ATy = dyn_cast<ArrayType>(PTy->getValueType())) {
return lle_VP_printstr(M, ArgVal);
}
Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);
return GenericValue();
}
@ -104,4 +126,10 @@ GenericValue lle_Vb_putchar(MethodType *M, const vector<GenericValue> &Args) {
return GenericValue();
}
// void "putchar"(ubyte)
GenericValue lle_VB_putchar(MethodType *M, const vector<GenericValue> &Args) {
cout << Args[0].UByteVal;
return GenericValue();
}
} // End extern "C"

View File

@ -74,10 +74,13 @@ public:
void handleUserInput();
// User Interation Methods...
void loadModule(const string &Filename);
bool flushModule();
bool callMethod(const string &Name); // return true on failure
void setBreakpoint(const string &Name);
void infoValue(const string &Name);
void printValue(const string &Name);
void print(const string &Name);
static void print(const Type *Ty, GenericValue V);
static void printValue(const Type *Ty, GenericValue V);

View File

@ -5,6 +5,7 @@
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>
@ -81,9 +82,14 @@ void Interpreter::handleUserInput() {
switch (E->CID) {
case Quit: UserQuit = true; break;
case Load:
cin >> Command;
loadModule(Command);
break;
case Flush: flushModule(); break;
case Print:
cin >> Command;
printValue(Command);
print(Command);
break;
case Info:
cin >> Command;
@ -118,6 +124,43 @@ void Interpreter::handleUserInput() {
} while (!UserQuit);
}
//===----------------------------------------------------------------------===//
// loadModule - Load a new module to execute...
//
void Interpreter::loadModule(const string &Filename) {
if (CurMod && !flushModule()) return; // Kill current execution
CurMod = ParseBytecodeFile(Filename);
if (CurMod == 0) {
cout << "Error parsing '" << Filename << "': No module loaded.\n";
return;
}
// TODO: link in support library...
}
//===----------------------------------------------------------------------===//
// flushModule - Return true if the current program has been unloaded.
//
bool Interpreter::flushModule() {
if (CurMod == 0) {
cout << "Error flushing: No module loaded!\n";
return false;
}
if (!ECStack.empty()) {
// TODO: if use is not sure, return false
cout << "Killing current execution!\n";
ECStack.clear();
CurFrame = -1;
}
delete CurMod;
CurMod = 0;
ExitCode = 0;
return true;
}
//===----------------------------------------------------------------------===//
// setBreakpoint - Enable a breakpoint at the specified location

View File

@ -9,7 +9,6 @@
#include "Interpreter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Bytecode/Reader.h"
cl::String InputFilename("" , "Input filename", cl::NoFlags, "-");
cl::String MainFunction ("f" , "Function to execute", cl::NoFlags, "main");
@ -21,10 +20,8 @@ cl::Flag ProfileMode ("profile", "Enable Profiling [unimp]");
// Interpreter ctor - Initialize stuff
//
Interpreter::Interpreter() : ExitCode(0), Profile(ProfileMode), CurFrame(-1) {
CurMod = ParseBytecodeFile(InputFilename);
if (CurMod == 0) {
cout << "Error parsing '" << InputFilename << "': No module loaded.\n";
}
CurMod = 0;
loadModule(InputFilename);
// Initialize the "backend"
initializeExecutionEngine();