mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-13 04:38:24 +00:00
Reapply commit 143028 with a fix: the problem was casting a ConstantExpr Mul
using BinaryOperator (which only works for instructions) when it should have been a cast to OverflowingBinaryOperator (which also works for constants). While there, correct a few other dubious looking uses of BinaryOperator. Thanks to Chad Rosier for the testcase. Original commit message: My super-optimizer noticed that we weren't folding this expression to true: (x *nsw x) sgt 0, where x = (y | 1). This occurs in 464.h264ref. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143125 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -758,7 +758,8 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
Value *X = 0, *Y = 0;
|
||||
if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
|
||||
(match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
|
||||
BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
|
||||
PossiblyExactOperator *Div =
|
||||
cast<PossiblyExactOperator>(Y == Op1 ? Op0 : Op1);
|
||||
if (Div->isExact())
|
||||
return X;
|
||||
}
|
||||
@ -842,7 +843,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
|
||||
Value *X = 0, *Y = 0;
|
||||
if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
|
||||
if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
|
||||
BinaryOperator *Mul = cast<BinaryOperator>(Op0);
|
||||
OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
|
||||
// If the Mul knows it does not overflow, then we are good to go.
|
||||
if ((isSigned && Mul->hasNoSignedWrap()) ||
|
||||
(!isSigned && Mul->hasNoUnsignedWrap()))
|
||||
|
@ -201,9 +201,36 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
|
||||
ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
|
||||
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
|
||||
Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
bool isKnownNegative = false;
|
||||
bool isKnownNonNegative = false;
|
||||
// If the multiplication is known not to overflow, compute the sign bit.
|
||||
if (Mask.isNegative() &&
|
||||
cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) {
|
||||
Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0);
|
||||
if (Op1 == Op2) {
|
||||
// The product of a number with itself is non-negative.
|
||||
isKnownNonNegative = true;
|
||||
} else {
|
||||
bool isKnownNonNegative1 = KnownZero.isNegative();
|
||||
bool isKnownNonNegative2 = KnownZero2.isNegative();
|
||||
bool isKnownNegative1 = KnownOne.isNegative();
|
||||
bool isKnownNegative2 = KnownOne2.isNegative();
|
||||
// The product of two numbers with the same sign is non-negative.
|
||||
isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) ||
|
||||
(isKnownNonNegative1 && isKnownNonNegative2);
|
||||
// The product of a negative number and a non-negative number is either
|
||||
// negative or zero.
|
||||
if (!isKnownNonNegative)
|
||||
isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 &&
|
||||
isKnownNonZero(Op2, TD, Depth)) ||
|
||||
(isKnownNegative2 && isKnownNonNegative1 &&
|
||||
isKnownNonZero(Op1, TD, Depth));
|
||||
}
|
||||
}
|
||||
|
||||
// If low bits are zero in either operand, output low known-0 bits.
|
||||
// Also compute a conserative estimate for high known-0 bits.
|
||||
// More trickiness is possible, but this is sufficient for the
|
||||
@ -220,6 +247,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
|
||||
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
|
||||
APInt::getHighBitsSet(BitWidth, LeadZ);
|
||||
KnownZero &= Mask;
|
||||
|
||||
if (isKnownNonNegative)
|
||||
KnownZero.setBit(BitWidth - 1);
|
||||
else if (isKnownNegative)
|
||||
KnownOne.setBit(BitWidth - 1);
|
||||
|
||||
return;
|
||||
}
|
||||
case Instruction::UDiv: {
|
||||
@ -784,7 +817,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
}
|
||||
|
||||
// The remaining tests are all recursive, so bail out if we hit the limit.
|
||||
if (Depth++ == MaxDepth)
|
||||
if (Depth++ >= MaxDepth)
|
||||
return false;
|
||||
|
||||
unsigned BitWidth = getBitWidth(V->getType(), TD);
|
||||
@ -802,7 +835,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
// if the lowest bit is shifted off the end.
|
||||
if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
|
||||
// shl nuw can't remove any non-zero bits.
|
||||
BinaryOperator *BO = cast<BinaryOperator>(V);
|
||||
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
|
||||
if (BO->hasNoUnsignedWrap())
|
||||
return isKnownNonZero(X, TD, Depth);
|
||||
|
||||
@ -816,7 +849,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
// defined if the sign bit is shifted off the end.
|
||||
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
|
||||
// shr exact can only shift out zero bits.
|
||||
BinaryOperator *BO = cast<BinaryOperator>(V);
|
||||
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
|
||||
if (BO->isExact())
|
||||
return isKnownNonZero(X, TD, Depth);
|
||||
|
||||
@ -827,7 +860,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
}
|
||||
// div exact can only produce a zero if the dividend is zero.
|
||||
else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
|
||||
BinaryOperator *BO = cast<BinaryOperator>(V);
|
||||
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
|
||||
if (BO->isExact())
|
||||
return isKnownNonZero(X, TD, Depth);
|
||||
}
|
||||
@ -868,6 +901,15 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
|
||||
return true;
|
||||
}
|
||||
// X * Y.
|
||||
else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
|
||||
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
|
||||
// If X and Y are non-zero then so is X * Y as long as the multiplication
|
||||
// does not overflow.
|
||||
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
|
||||
isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
|
||||
return true;
|
||||
}
|
||||
// (C ? X : Y) != 0 if X != 0 and Y != 0.
|
||||
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
|
||||
if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
|
||||
|
12
test/Transforms/InstSimplify/2011-10-27-BinOpCrash.ll
Normal file
12
test/Transforms/InstSimplify/2011-10-27-BinOpCrash.ll
Normal file
@ -0,0 +1,12 @@
|
||||
; RUN: opt < %s -instcombine
|
||||
|
||||
@_ZN11xercesc_2_5L11gDigitCharsE = external constant [32 x i16], align 2
|
||||
@_ZN11xercesc_2_5L10gBaseCharsE = external constant [354 x i16], align 2
|
||||
@_ZN11xercesc_2_5L17gIdeographicCharsE = external constant [7 x i16], align 2
|
||||
@_ZN11xercesc_2_5L15gCombiningCharsE = external constant [163 x i16], align 2
|
||||
|
||||
define i32 @_ZN11xercesc_2_515XMLRangeFactory11buildRangesEv(i32 %x) {
|
||||
%a = add i32 %x, add (i32 add (i32 ashr (i32 add (i32 mul (i32 ptrtoint ([32 x i16]* @_ZN11xercesc_2_5L11gDigitCharsE to i32), i32 -1), i32 ptrtoint (i16* getelementptr inbounds ([32 x i16]* @_ZN11xercesc_2_5L11gDigitCharsE, i32 0, i32 30) to i32)), i32 1), i32 ashr (i32 add (i32 mul (i32 ptrtoint ([7 x i16]* @_ZN11xercesc_2_5L17gIdeographicCharsE to i32), i32 -1), i32 ptrtoint (i16* getelementptr inbounds ([7 x i16]* @_ZN11xercesc_2_5L17gIdeographicCharsE, i32 0, i32 4) to i32)), i32 1)), i32 8)
|
||||
%b = add i32 %a, %x
|
||||
ret i32 %b
|
||||
}
|
@ -323,3 +323,34 @@ define i1 @and1(i32 %X) {
|
||||
ret i1 %B
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
||||
define i1 @mul1(i32 %X) {
|
||||
; CHECK: @mul1
|
||||
; Square of a non-zero number is non-zero if there is no overflow.
|
||||
%Y = or i32 %X, 1
|
||||
%M = mul nuw i32 %Y, %Y
|
||||
%C = icmp eq i32 %M, 0
|
||||
ret i1 %C
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
||||
define i1 @mul2(i32 %X) {
|
||||
; CHECK: @mul2
|
||||
; Square of a non-zero number is positive if there is no signed overflow.
|
||||
%Y = or i32 %X, 1
|
||||
%M = mul nsw i32 %Y, %Y
|
||||
%C = icmp sgt i32 %M, 0
|
||||
ret i1 %C
|
||||
; CHECK: ret i1 true
|
||||
}
|
||||
|
||||
define i1 @mul3(i32 %X, i32 %Y) {
|
||||
; CHECK: @mul3
|
||||
; Product of non-negative numbers is non-negative if there is no signed overflow.
|
||||
%XX = mul nsw i32 %X, %X
|
||||
%YY = mul nsw i32 %Y, %Y
|
||||
%M = mul nsw i32 %XX, %YY
|
||||
%C = icmp sge i32 %M, 0
|
||||
ret i1 %C
|
||||
; CHECK: ret i1 true
|
||||
}
|
||||
|
Reference in New Issue
Block a user