Change indirect-globals to use a dedicated allocIndirectGV. This lets us

remove start/finishGVStub and the BufferState helper class from the
MachineCodeEmitter interface.  It has the side-effect of not setting the
indirect global writable and then executable on ARM, but that shouldn't be
necessary.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91464 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jeffrey Yasskin
2009-12-15 22:42:46 +00:00
parent 6be413dd64
commit 32d7e6ebde
7 changed files with 85 additions and 108 deletions

View File

@ -68,29 +68,11 @@ public:
///
virtual bool finishFunction(MachineFunction &F) = 0;
/// startGVStub - This callback is invoked when the JIT needs the address of a
/// GV (e.g. function) that has not been code generated yet. The StubSize
/// specifies the total size required by the stub. The BufferState must be
/// passed to finishGVStub, and start/finish pairs with the same BufferState
/// must be properly nested.
///
virtual void startGVStub(BufferState &BS, const GlobalValue* GV,
unsigned StubSize, unsigned Alignment = 1) = 0;
/// startGVStub - This callback is invoked when the JIT needs the address of a
/// GV (e.g. function) that has not been code generated yet. Buffer points to
/// memory already allocated for this stub. The BufferState must be passed to
/// finishGVStub, and start/finish pairs with the same BufferState must be
/// properly nested.
///
virtual void startGVStub(BufferState &BS, void *Buffer,
unsigned StubSize) = 0;
/// finishGVStub - This callback is invoked to terminate a GV stub and returns
/// the start address of the stub. The BufferState must first have been
/// passed to startGVStub.
///
virtual void *finishGVStub(BufferState &BS) = 0;
/// allocIndirectGV - Allocates and fills storage for an indirect
/// GlobalValue, and returns the address.
virtual void *allocIndirectGV(const GlobalValue *GV,
const uint8_t *Buffer, size_t Size,
unsigned Alignment) = 0;
/// emitByte - This callback is invoked when a byte needs to be written to the
/// output stream.

View File

@ -48,41 +48,16 @@ class Function;
/// occurred, more memory is allocated, and we reemit the code into it.
///
class MachineCodeEmitter {
public:
class BufferState {
friend class MachineCodeEmitter;
/// BufferBegin/BufferEnd - Pointers to the start and end of the memory
/// allocated for this code buffer.
uint8_t *BufferBegin, *BufferEnd;
/// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
/// code. This is guranteed to be in the range [BufferBegin,BufferEnd]. If
/// this pointer is at BufferEnd, it will never move due to code emission,
/// and all code emission requests will be ignored (this is the buffer
/// overflow condition).
uint8_t *CurBufferPtr;
public:
BufferState() : BufferBegin(NULL), BufferEnd(NULL), CurBufferPtr(NULL) {}
};
protected:
/// These have the same meanings as the fields in BufferState
uint8_t *BufferBegin, *BufferEnd, *CurBufferPtr;
/// Save or restore the current buffer state. The BufferState objects must be
/// used as a stack.
void SaveStateTo(BufferState &BS) {
assert(BS.BufferBegin == NULL &&
"Can't save state into the same BufferState twice.");
BS.BufferBegin = BufferBegin;
BS.BufferEnd = BufferEnd;
BS.CurBufferPtr = CurBufferPtr;
}
void RestoreStateFrom(BufferState &BS) {
BufferBegin = BS.BufferBegin;
BufferEnd = BS.BufferEnd;
CurBufferPtr = BS.CurBufferPtr;
}
/// BufferBegin/BufferEnd - Pointers to the start and end of the memory
/// allocated for this code buffer.
uint8_t *BufferBegin, *BufferEnd;
/// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
/// code. This is guranteed to be in the range [BufferBegin,BufferEnd]. If
/// this pointer is at BufferEnd, it will never move due to code emission, and
/// all code emission requests will be ignored (this is the buffer overflow
/// condition).
uint8_t *CurBufferPtr;
public:
virtual ~MachineCodeEmitter() {}
@ -113,15 +88,23 @@ public:
///
void emitWordLE(uint32_t W) {
if (4 <= BufferEnd-CurBufferPtr) {
*CurBufferPtr++ = (uint8_t)(W >> 0);
*CurBufferPtr++ = (uint8_t)(W >> 8);
*CurBufferPtr++ = (uint8_t)(W >> 16);
*CurBufferPtr++ = (uint8_t)(W >> 24);
emitWordLEInto(CurBufferPtr, W);
} else {
CurBufferPtr = BufferEnd;
}
}
/// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
/// written to an arbitrary buffer in little-endian format. Buf must have at
/// least 4 bytes of available space.
///
static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
*Buf++ = (uint8_t)(W >> 0);
*Buf++ = (uint8_t)(W >> 8);
*Buf++ = (uint8_t)(W >> 16);
*Buf++ = (uint8_t)(W >> 24);
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the output stream in big-endian format.
///