mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
Replace the core comparison login in merge functions. We can now merge
vector<>::push_back() in: int foo(vector<int> &a, vector<unsigned> &b) { a.push_back(10); b.push_back(11); } to two calls to the same push_back function, or fold away the two copies of push_back() in: struct T { int; }; struct S { char; }; vector<T*> t; vector<S*> s; void f(T *x) { t.push_back(x); } void g(S *x) { s.push_back(x); } but leave f() and g() separate, since they refer to two different global variables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103698 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
054be92e1d
commit
33ab0b1568
@ -17,32 +17,55 @@
|
||||
// important that the hash function be high quality. The equality comparison
|
||||
// iterates through each instruction in each basic block.
|
||||
//
|
||||
// When a match is found, the functions are folded. We can only fold two
|
||||
// functions when we know that the definition of one of them is not
|
||||
// overridable.
|
||||
// When a match is found the functions are folded. If both functions are
|
||||
// overridable, we move the functionality into a new internal function and
|
||||
// leave two overridable thunks to it.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Future work:
|
||||
//
|
||||
// * fold vector<T*>::push_back and vector<S*>::push_back.
|
||||
//
|
||||
// These two functions have different types, but in a way that doesn't matter
|
||||
// to us. As long as we never see an S or T itself, using S* and S** is the
|
||||
// same as using a T* and T**.
|
||||
//
|
||||
// * virtual functions.
|
||||
//
|
||||
// Many functions have their address taken by the virtual function table for
|
||||
// the object they belong to. However, as long as it's only used for a lookup
|
||||
// and call, this is irrelevant, and we'd like to fold such implementations.
|
||||
//
|
||||
// * use SCC to cut down on pair-wise comparisons and solve larger cycles.
|
||||
//
|
||||
// The current implementation loops over a pair-wise comparison of all
|
||||
// functions in the program where the two functions in the pair are treated as
|
||||
// assumed to be equal until proven otherwise. We could both use fewer
|
||||
// comparisons and optimize more complex cases if we used strongly connected
|
||||
// components of the call graph.
|
||||
//
|
||||
// * be smarter about bitcast.
|
||||
//
|
||||
// In order to fold functions, we will sometimes add either bitcast instructions
|
||||
// or bitcast constant expressions. Unfortunately, this can confound further
|
||||
// analysis since the two functions differ where one has a bitcast and the
|
||||
// other doesn't. We should learn to peer through bitcasts without imposing bad
|
||||
// performance properties.
|
||||
//
|
||||
// * don't emit aliases for Mach-O.
|
||||
//
|
||||
// Mach-O doesn't support aliases which means that we must avoid introducing
|
||||
// them in the bitcode on architectures which don't support them, such as
|
||||
// Mac OSX. There's a few approaches to this problem;
|
||||
// a) teach codegen to lower global aliases to thunks on platforms which don't
|
||||
// support them.
|
||||
// b) always emit thunks, and create a separate thunk-to-alias pass which
|
||||
// runs on ELF systems. This has the added benefit of transforming other
|
||||
// thunks such as those produced by a C++ frontend into aliases when legal
|
||||
// to do so.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "mergefunc"
|
||||
#include "llvm/Transforms/IPO.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/FoldingSet.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/InlineAsm.h"
|
||||
@ -54,6 +77,7 @@
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
using namespace llvm;
|
||||
@ -61,17 +85,33 @@ using namespace llvm;
|
||||
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
||||
|
||||
namespace {
|
||||
struct MergeFunctions : public ModulePass {
|
||||
class MergeFunctions : public ModulePass {
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
MergeFunctions() : ModulePass(&ID) {}
|
||||
|
||||
bool runOnModule(Module &M);
|
||||
|
||||
private:
|
||||
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
|
||||
const GetElementPtrInst *GEP2);
|
||||
|
||||
bool equals(const BasicBlock *BB1, const BasicBlock *BB2);
|
||||
bool equals(const Function *F, const Function *G);
|
||||
|
||||
bool compare(const Value *V1, const Value *V2);
|
||||
|
||||
const Function *LHS, *RHS;
|
||||
typedef DenseMap<const Value *, unsigned long> IDMap;
|
||||
IDMap Map;
|
||||
DenseMap<const Function *, IDMap> Domains;
|
||||
DenseMap<const Function *, unsigned long> DomainCount;
|
||||
TargetData *TD;
|
||||
};
|
||||
}
|
||||
|
||||
char MergeFunctions::ID = 0;
|
||||
static RegisterPass<MergeFunctions>
|
||||
X("mergefunc", "Merge Functions");
|
||||
static RegisterPass<MergeFunctions> X("mergefunc", "Merge Functions");
|
||||
|
||||
ModulePass *llvm::createMergeFunctionsPass() {
|
||||
return new MergeFunctions();
|
||||
@ -95,15 +135,6 @@ static unsigned long hash(const Function *F) {
|
||||
return ID.ComputeHash();
|
||||
}
|
||||
|
||||
/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
|
||||
/// walking the chain of cast operands. Otherwise, returns the argument.
|
||||
static Value* IgnoreBitcasts(Value *V) {
|
||||
while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
|
||||
V = BC->getOperand(0);
|
||||
|
||||
return V;
|
||||
}
|
||||
|
||||
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
|
||||
/// type equivalence rules apply.
|
||||
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
||||
@ -113,6 +144,14 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
||||
return false;
|
||||
|
||||
switch(Ty1->getTypeID()) {
|
||||
default:
|
||||
llvm_unreachable("Unknown type!");
|
||||
// Fall through in Release-Asserts mode.
|
||||
case Type::IntegerTyID:
|
||||
case Type::OpaqueTyID:
|
||||
// Ty1 == Ty2 would have returned true earlier.
|
||||
return false;
|
||||
|
||||
case Type::VoidTyID:
|
||||
case Type::FloatTyID:
|
||||
case Type::DoubleTyID:
|
||||
@ -123,15 +162,6 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
||||
case Type::MetadataTyID:
|
||||
return true;
|
||||
|
||||
case Type::IntegerTyID:
|
||||
case Type::OpaqueTyID:
|
||||
// Ty1 == Ty2 would have returned true earlier.
|
||||
return false;
|
||||
|
||||
default:
|
||||
llvm_unreachable("Unknown type!");
|
||||
return false;
|
||||
|
||||
case Type::PointerTyID: {
|
||||
const PointerType *PTy1 = cast<PointerType>(Ty1);
|
||||
const PointerType *PTy2 = cast<PointerType>(Ty2);
|
||||
@ -154,6 +184,21 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
||||
return true;
|
||||
}
|
||||
|
||||
case Type::UnionTyID: {
|
||||
const UnionType *UTy1 = cast<UnionType>(Ty1);
|
||||
const UnionType *UTy2 = cast<UnionType>(Ty2);
|
||||
|
||||
// TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc.
|
||||
if (UTy1->getNumElements() != UTy2->getNumElements())
|
||||
return false;
|
||||
|
||||
for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
|
||||
if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
case Type::FunctionTyID: {
|
||||
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
|
||||
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
|
||||
@ -236,123 +281,136 @@ isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool compare(const Value *V, const Value *U) {
|
||||
assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
|
||||
"Must not compare basic blocks.");
|
||||
|
||||
assert(isEquivalentType(V->getType(), U->getType()) &&
|
||||
"Two of the same operation have operands of different type.");
|
||||
|
||||
// TODO: If the constant is an expression of F, we should accept that it's
|
||||
// equal to the same expression in terms of G.
|
||||
if (isa<Constant>(V))
|
||||
return V == U;
|
||||
|
||||
// The caller has ensured that ValueMap[V] != U. Since Arguments are
|
||||
// pre-loaded into the ValueMap, and Instructions are added as we go, we know
|
||||
// that this can only be a mis-match.
|
||||
if (isa<Instruction>(V) || isa<Argument>(V))
|
||||
return false;
|
||||
|
||||
if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
|
||||
const InlineAsm *IAF = cast<InlineAsm>(V);
|
||||
const InlineAsm *IAG = cast<InlineAsm>(U);
|
||||
return IAF->getAsmString() == IAG->getAsmString() &&
|
||||
IAF->getConstraintString() == IAG->getConstraintString();
|
||||
bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1,
|
||||
const GetElementPtrInst *GEP2) {
|
||||
if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
|
||||
SmallVector<Value *, 8> Indices1, Indices2;
|
||||
for (GetElementPtrInst::const_op_iterator I = GEP1->idx_begin(),
|
||||
E = GEP1->idx_end(); I != E; ++I) {
|
||||
Indices1.push_back(*I);
|
||||
}
|
||||
for (GetElementPtrInst::const_op_iterator I = GEP2->idx_begin(),
|
||||
E = GEP2->idx_end(); I != E; ++I) {
|
||||
Indices2.push_back(*I);
|
||||
}
|
||||
uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
|
||||
Indices1.data(), Indices1.size());
|
||||
uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
|
||||
Indices2.data(), Indices2.size());
|
||||
return Offset1 == Offset2;
|
||||
}
|
||||
|
||||
// Equivalent types aren't enough.
|
||||
if (GEP1->getPointerOperand()->getType() !=
|
||||
GEP2->getPointerOperand()->getType())
|
||||
return false;
|
||||
|
||||
if (GEP1->getNumOperands() != GEP2->getNumOperands())
|
||||
return false;
|
||||
|
||||
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
|
||||
if (!compare(GEP1->getOperand(i), GEP2->getOperand(i)))
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
|
||||
DenseMap<const Value *, const Value *> &ValueMap,
|
||||
DenseMap<const Value *, const Value *> &SpeculationMap) {
|
||||
// Speculatively add it anyways. If it's false, we'll notice a difference
|
||||
// later, and this won't matter.
|
||||
ValueMap[BB1] = BB2;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool MergeFunctions::compare(const Value *V1, const Value *V2) {
|
||||
if (V1 == LHS || V1 == RHS)
|
||||
if (V2 == LHS || V2 == RHS)
|
||||
return true;
|
||||
|
||||
// TODO: constant expressions in terms of LHS and RHS
|
||||
if (isa<Constant>(V1))
|
||||
return V1 == V2;
|
||||
|
||||
if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
|
||||
const InlineAsm *IA1 = cast<InlineAsm>(V1);
|
||||
const InlineAsm *IA2 = cast<InlineAsm>(V2);
|
||||
return IA1->getAsmString() == IA2->getAsmString() &&
|
||||
IA1->getConstraintString() == IA2->getConstraintString();
|
||||
}
|
||||
|
||||
// We enumerate constants globally and arguments, basic blocks or
|
||||
// instructions within the function they belong to.
|
||||
const Function *Domain1 = NULL;
|
||||
if (const Argument *A = dyn_cast<Argument>(V1)) {
|
||||
Domain1 = A->getParent();
|
||||
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V1)) {
|
||||
Domain1 = BB->getParent();
|
||||
} else if (const Instruction *I = dyn_cast<Instruction>(V1)) {
|
||||
Domain1 = I->getParent()->getParent();
|
||||
}
|
||||
|
||||
const Function *Domain2 = NULL;
|
||||
if (const Argument *A = dyn_cast<Argument>(V2)) {
|
||||
Domain2 = A->getParent();
|
||||
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V2)) {
|
||||
Domain2 = BB->getParent();
|
||||
} else if (const Instruction *I = dyn_cast<Instruction>(V2)) {
|
||||
Domain2 = I->getParent()->getParent();
|
||||
}
|
||||
|
||||
if (Domain1 != Domain2)
|
||||
if (Domain1 != LHS && Domain1 != RHS)
|
||||
if (Domain2 != LHS && Domain2 != RHS)
|
||||
return false;
|
||||
|
||||
IDMap &Map1 = Domains[Domain1];
|
||||
unsigned long &ID1 = Map1[V1];
|
||||
if (!ID1)
|
||||
ID1 = ++DomainCount[Domain1];
|
||||
|
||||
IDMap &Map2 = Domains[Domain2];
|
||||
unsigned long &ID2 = Map2[V2];
|
||||
if (!ID2)
|
||||
ID2 = ++DomainCount[Domain2];
|
||||
|
||||
return ID1 == ID2;
|
||||
}
|
||||
|
||||
bool MergeFunctions::equals(const BasicBlock *BB1, const BasicBlock *BB2) {
|
||||
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
|
||||
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
|
||||
|
||||
do {
|
||||
if (isa<BitCastInst>(FI)) {
|
||||
++FI;
|
||||
continue;
|
||||
}
|
||||
if (isa<BitCastInst>(GI)) {
|
||||
++GI;
|
||||
continue;
|
||||
}
|
||||
if (!compare(FI, GI))
|
||||
return false;
|
||||
|
||||
if (isa<GetElementPtrInst>(FI) && isa<GetElementPtrInst>(GI)) {
|
||||
const GetElementPtrInst *GEP1 = cast<GetElementPtrInst>(FI);
|
||||
const GetElementPtrInst *GEP2 = cast<GetElementPtrInst>(GI);
|
||||
|
||||
if (!compare(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
|
||||
return false;
|
||||
|
||||
if (!isEquivalentGEP(GEP1, GEP2))
|
||||
return false;
|
||||
} else {
|
||||
if (!isEquivalentOperation(FI, GI))
|
||||
return false;
|
||||
|
||||
if (isa<GetElementPtrInst>(FI)) {
|
||||
const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
|
||||
const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
|
||||
if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
|
||||
// It's effectively a bitcast.
|
||||
++FI, ++GI;
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: we only really care about the elements before the index
|
||||
if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ValueMap[FI] == GI) {
|
||||
++FI, ++GI;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ValueMap[FI] != NULL)
|
||||
return false;
|
||||
|
||||
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
|
||||
Value *OpF = IgnoreBitcasts(FI->getOperand(i));
|
||||
Value *OpG = IgnoreBitcasts(GI->getOperand(i));
|
||||
Value *OpF = FI->getOperand(i);
|
||||
Value *OpG = GI->getOperand(i);
|
||||
|
||||
if (ValueMap[OpF] == OpG)
|
||||
continue;
|
||||
|
||||
if (ValueMap[OpF] != NULL)
|
||||
if (!compare(OpF, OpG))
|
||||
return false;
|
||||
|
||||
if (OpF->getValueID() != OpG->getValueID() ||
|
||||
!isEquivalentType(OpF->getType(), OpG->getType()))
|
||||
return false;
|
||||
|
||||
if (isa<PHINode>(FI)) {
|
||||
if (SpeculationMap[OpF] == NULL)
|
||||
SpeculationMap[OpF] = OpG;
|
||||
else if (SpeculationMap[OpF] != OpG)
|
||||
return false;
|
||||
continue;
|
||||
} else if (isa<BasicBlock>(OpF)) {
|
||||
assert(isa<TerminatorInst>(FI) &&
|
||||
"BasicBlock referenced by non-Terminator non-PHI");
|
||||
// This call changes the ValueMap, hence we can't use
|
||||
// Value *& = ValueMap[...]
|
||||
if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
|
||||
SpeculationMap))
|
||||
return false;
|
||||
} else {
|
||||
if (!compare(OpF, OpG))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
ValueMap[OpF] = OpG;
|
||||
}
|
||||
|
||||
ValueMap[FI] = GI;
|
||||
++FI, ++GI;
|
||||
} while (FI != FE && GI != GE);
|
||||
|
||||
return FI == FE && GI == GE;
|
||||
}
|
||||
|
||||
static bool equals(const Function *F, const Function *G) {
|
||||
bool MergeFunctions::equals(const Function *F, const Function *G) {
|
||||
// We need to recheck everything, but check the things that weren't included
|
||||
// in the hash first.
|
||||
|
||||
@ -382,27 +440,46 @@ static bool equals(const Function *F, const Function *G) {
|
||||
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
|
||||
return false;
|
||||
|
||||
DenseMap<const Value *, const Value *> ValueMap;
|
||||
DenseMap<const Value *, const Value *> SpeculationMap;
|
||||
ValueMap[F] = G;
|
||||
|
||||
assert(F->arg_size() == G->arg_size() &&
|
||||
"Identical functions have a different number of args.");
|
||||
|
||||
LHS = F;
|
||||
RHS = G;
|
||||
|
||||
// Visit the arguments so that they get enumerated in the order they're
|
||||
// passed in.
|
||||
for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
|
||||
fe = F->arg_end(); fi != fe; ++fi, ++gi)
|
||||
ValueMap[fi] = gi;
|
||||
|
||||
if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
|
||||
SpeculationMap))
|
||||
return false;
|
||||
|
||||
for (DenseMap<const Value *, const Value *>::iterator
|
||||
I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
|
||||
if (ValueMap[I->first] != I->second)
|
||||
return false;
|
||||
fe = F->arg_end(); fi != fe; ++fi, ++gi) {
|
||||
if (!compare(fi, gi))
|
||||
llvm_unreachable("Arguments repeat");
|
||||
}
|
||||
|
||||
SmallVector<const BasicBlock *, 8> FBBs, GBBs;
|
||||
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F.
|
||||
FBBs.push_back(&F->getEntryBlock());
|
||||
GBBs.push_back(&G->getEntryBlock());
|
||||
VisitedBBs.insert(FBBs[0]);
|
||||
while (!FBBs.empty()) {
|
||||
const BasicBlock *FBB = FBBs.pop_back_val();
|
||||
const BasicBlock *GBB = GBBs.pop_back_val();
|
||||
if (!compare(FBB, GBB) || !equals(FBB, GBB)) {
|
||||
Domains.clear();
|
||||
DomainCount.clear();
|
||||
return false;
|
||||
}
|
||||
const TerminatorInst *FTI = FBB->getTerminator();
|
||||
const TerminatorInst *GTI = GBB->getTerminator();
|
||||
assert(FTI->getNumSuccessors() == GTI->getNumSuccessors());
|
||||
for (unsigned i = 0, e = FTI->getNumSuccessors(); i != e; ++i) {
|
||||
if (!VisitedBBs.insert(FTI->getSuccessor(i)))
|
||||
continue;
|
||||
FBBs.push_back(FTI->getSuccessor(i));
|
||||
GBBs.push_back(GTI->getSuccessor(i));
|
||||
}
|
||||
}
|
||||
|
||||
Domains.clear();
|
||||
DomainCount.clear();
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -476,20 +553,32 @@ static LinkageCategory categorize(const Function *F) {
|
||||
}
|
||||
|
||||
static void ThunkGToF(Function *F, Function *G) {
|
||||
if (!G->mayBeOverridden()) {
|
||||
// Redirect direct callers of G to F.
|
||||
Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
|
||||
for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
|
||||
UI != UE;) {
|
||||
Value::use_iterator TheIter = UI;
|
||||
++UI;
|
||||
CallSite CS(*TheIter);
|
||||
if (CS && CS.isCallee(TheIter))
|
||||
TheIter.getUse().set(BitcastF);
|
||||
}
|
||||
}
|
||||
|
||||
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
||||
G->getParent());
|
||||
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
||||
|
||||
std::vector<Value *> Args;
|
||||
SmallVector<Value *, 16> Args;
|
||||
unsigned i = 0;
|
||||
const FunctionType *FFTy = F->getFunctionType();
|
||||
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
||||
AI != AE; ++AI) {
|
||||
if (FFTy->getParamType(i) == AI->getType())
|
||||
if (FFTy->getParamType(i) == AI->getType()) {
|
||||
Args.push_back(AI);
|
||||
else {
|
||||
Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
|
||||
Args.push_back(BCI);
|
||||
} else {
|
||||
Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB));
|
||||
}
|
||||
++i;
|
||||
}
|
||||
@ -510,8 +599,6 @@ static void ThunkGToF(Function *F, Function *G) {
|
||||
NewG->takeName(G);
|
||||
G->replaceAllUsesWith(NewG);
|
||||
G->eraseFromParent();
|
||||
|
||||
// TODO: look at direct callers to G and make them all direct callers to F.
|
||||
}
|
||||
|
||||
static void AliasGToF(Function *F, Function *G) {
|
||||
@ -601,8 +688,7 @@ static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
|
||||
AliasGToF(F, G);
|
||||
}
|
||||
} break;
|
||||
}
|
||||
break;
|
||||
} break;
|
||||
}
|
||||
|
||||
++NumFunctionsMerged;
|
||||
@ -619,15 +705,13 @@ bool MergeFunctions::runOnModule(Module &M) {
|
||||
std::map<unsigned long, std::vector<Function *> > FnMap;
|
||||
|
||||
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
||||
if (F->isDeclaration() || F->isIntrinsic())
|
||||
if (F->isDeclaration())
|
||||
continue;
|
||||
|
||||
FnMap[hash(F)].push_back(F);
|
||||
}
|
||||
|
||||
// TODO: instead of running in a loop, we could also fold functions in
|
||||
// callgraph order. Constructing the CFG probably isn't cheaper than just
|
||||
// running in a loop, unless it happened to already be available.
|
||||
TD = getAnalysisIfAvailable<TargetData>();
|
||||
|
||||
bool LocalChanged;
|
||||
do {
|
||||
|
Loading…
x
Reference in New Issue
Block a user