Added implementation of immutable (functional) maps and sets, as

implemented on top of a functional AVL tree.  The AVL balancing code
is inspired by the OCaml implementation of Map, which also uses a functional
AVL tree.

Documentation is currently limited and cleanups are planned, but this code
compiles and has been tested.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42813 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Ted Kremenek 2007-10-09 21:38:09 +00:00
parent b593898e11
commit 33bbed8f2a
2 changed files with 771 additions and 0 deletions

View File

@ -0,0 +1,163 @@
//===--- ImmutableMap.h - Immutable (functional) map interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMAP_H
#define LLVM_ADT_IMMAP_H
#include "llvm/ADT/ImmutableSet.h"
namespace llvm {
/// ImutKeyValueInfo -Traits class used by ImmutableMap. While both the first and
/// second elements in a pair are used to generate profile information,
/// only the first element (the key) is used by isEqual and isLess.
template <typename T, typename S>
struct ImutKeyValueInfo {
typedef const std::pair<T,S> value_type;
typedef const value_type& value_type_ref;
typedef const T key_type;
typedef const T& key_type_ref;
typedef const S data_type;
typedef const S& data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref V) {
return V.first;
}
static inline bool isEqual(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isEqual(L,R);
}
static inline bool isLess(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isLess(L,R);
}
static inline void Profile(FoldingSetNodeID& ID, value_type_ref V) {
ImutContainerInfo<T>::Profile(ID, V.first);
ImutContainerInfo<S>::Profile(ID, V.second);
}
};
template <typename KeyT, typename ValT,
typename ValInfo = ImutKeyValueInfo<KeyT,ValT> >
class ImmutableMap {
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef typename ValInfo::key_type key_type;
typedef typename ValInfo::key_type_ref key_type_ref;
typedef typename ValInfo::data_type data_type;
typedef typename ValInfo::data_type_ref data_type_ref;
private:
typedef ImutAVLTree<ValInfo> TreeTy;
TreeTy* Root;
ImmutableMap(TreeTy* R) : Root(R) {}
public:
class Factory {
typename TreeTy::Factory F;
public:
Factory() {}
ImmutableMap GetEmptyMap() { return ImmutableMap(F.GetEmptyTree()); }
ImmutableMap Add(ImmutableMap Old, key_type_ref K, data_type_ref D) {
return ImmutableMap(F.Add(Old.Root,std::make_pair<key_type,data_type>(K,D)));
}
ImmutableMap Remove(ImmutableMap Old, key_type_ref K) {
return ImmutableMap(F.Remove(Old.Root,K));
}
private:
Factory(const Factory& RHS) {};
void operator=(const Factory& RHS) {};
};
friend class Factory;
bool contains(key_type_ref K) const {
return Root ? Root->contains(K) : false;
}
data_type* find(key_type_ref K) const {
if (Root) {
TreeTy* T = Root->find(K);
if (T) return &T->getValue().second;
}
return NULL;
}
bool operator==(ImmutableMap RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(ImmutableMap RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// Foreach - A limited form of map iteration.
//===--------------------------------------------------===//
private:
template <typename Callback>
struct CBWrapper {
Callback C;
void operator()(value_type_ref V) { C(V.first,V.second); }
};
template <typename Callback>
struct CBWrapperRef {
Callback &C;
CBWrapperRef(Callback& c) : C(c) {}
void operator()(value_type_ref V) { C(V.first,V.second); }
};
public:
template <typename Callback>
void foreach(Callback& C) {
if (Root) {
CBWrapperRef<Callback> CB(C);
Root->foreach(CB);
}
}
template <typename Callback>
void foreach() {
if (Root) {
CBWrapper<Callback> CB;
Root->foreach(CB);
}
}
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
};
} // end namespace llvm
#endif

View File

@ -0,0 +1,608 @@
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMSET_H
#define LLVM_ADT_IMSET_H
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/FoldingSet.h"
#include <cassert>
namespace llvm {
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLFactory;
template <typename ImutInfo >
class ImutAVLTree : public FoldingSetNode {
struct ComputeIsEqual;
public:
typedef typename ImutInfo::key_type_ref key_type_ref;
typedef typename ImutInfo::value_type value_type;
typedef typename ImutInfo::value_type_ref value_type_ref;
typedef ImutAVLFactory<ImutInfo> Factory;
friend class ImutAVLFactory<ImutInfo>;
//===----------------------------------------------------===//
// Public Interface.
//===----------------------------------------------------===//
ImutAVLTree* getLeft() const { return reinterpret_cast<ImutAVLTree*>(Left); }
ImutAVLTree* getRight() const { return Right; }
unsigned getHeight() const { return Height; }
const value_type& getValue() const { return Value; }
ImutAVLTree* find(key_type_ref K) {
ImutAVLTree *T = this;
while (T) {
key_type_ref CurrentKey = ImutInfo::KeyOfValue(Value(T));
if (ImutInfo::isEqual(K,CurrentKey))
return T;
else if (ImutInfo::isLess(K,CurrentKey))
T = T->getLeft();
else
T = T->getRight();
}
return NULL;
}
unsigned size() const {
unsigned n = 1;
if (const ImutAVLTree* L = getLeft()) n += L->size();
if (const ImutAVLTree* R = getRight()) n += R->size();
return n;
}
bool isEqual(const ImutAVLTree& RHS) const {
// FIXME: Todo.
return true;
}
bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
bool contains(const key_type_ref K) { return (bool) find(K); }
template <typename Callback>
void foreach(Callback& C) {
if (ImutAVLTree* L = getLeft()) L->foreach(C);
C(Value);
if (ImutAVLTree* R = getRight()) R->foreach(C);
}
unsigned verify() const {
unsigned HL = getLeft() ? getLeft()->verify() : 0;
unsigned HR = getRight() ? getRight()->verify() : 0;
assert (getHeight() == ( HL > HR ? HL : HR ) + 1
&& "Height calculation wrong.");
assert ((HL > HR ? HL-HR : HR-HL) <= 2
&& "Balancing invariant violated.");
assert (!getLeft()
|| ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
ImutInfo::KeyOfValue(getValue()))
&& "Value in left child is not less that current value.");
assert (!getRight()
|| ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(getRight()->getValue()))
&& "Current value is not less that value of right child.");
return getHeight();
}
//===----------------------------------------------------===//
// Internal Values.
//===----------------------------------------------------===//
private:
uintptr_t Left;
ImutAVLTree* Right;
unsigned Height;
value_type Value;
//===----------------------------------------------------===//
// Profiling or FoldingSet.
//===----------------------------------------------------===//
static inline
void Profile(FoldingSetNodeID& ID, ImutAVLTree* L, ImutAVLTree* R,
unsigned H, value_type_ref V) {
ID.AddPointer(L);
ID.AddPointer(R);
ID.AddInteger(H);
ImutInfo::Profile(ID,V);
}
public:
void Profile(FoldingSetNodeID& ID) {
Profile(ID,getSafeLeft(),getRight(),getHeight(),getValue());
}
//===----------------------------------------------------===//
// Internal methods (node manipulation; used by Factory).
//===----------------------------------------------------===//
private:
ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height)
: Left(reinterpret_cast<uintptr_t>(l) | 0x1),
Right(r), Height(height), Value(v) {}
bool isMutable() const { return Left & 0x1; }
ImutAVLTree* getSafeLeft() const {
return reinterpret_cast<ImutAVLTree*>(Left & ~0x1);
}
// Mutating operations. A tree root can be manipulated as long as
// its reference has not "escaped" from internal methods of a
// factory object (see below). When a tree pointer is externally
// viewable by client code, the internal "mutable bit" is cleared
// to mark the tree immutable. Note that a tree that still has
// its mutable bit set may have children (subtrees) that are themselves
// immutable.
void RemoveMutableFlag() {
assert (Left & 0x1 && "Mutable flag already removed.");
Left &= ~0x1;
}
void setLeft(ImutAVLTree* NewLeft) {
assert (isMutable());
Left = reinterpret_cast<uintptr_t>(NewLeft) | 0x1;
}
void setRight(ImutAVLTree* NewRight) {
assert (isMutable());
Right = NewRight;
}
void setHeight(unsigned h) {
assert (isMutable());
Height = h;
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//
template <typename ImutInfo >
class ImutAVLFactory {
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef typename TreeTy::value_type_ref value_type_ref;
typedef typename TreeTy::key_type_ref key_type_ref;
typedef FoldingSet<TreeTy> CacheTy;
CacheTy Cache;
BumpPtrAllocator Allocator;
//===--------------------------------------------------===//
// Public interface.
//===--------------------------------------------------===//
public:
ImutAVLFactory() {}
TreeTy* Add(TreeTy* T, value_type_ref V) {
T = Add_internal(V,T);
MarkImmutable(T);
return T;
}
TreeTy* Remove(TreeTy* T, key_type_ref V) {
T = Remove_internal(V,T);
MarkImmutable(T);
return T;
}
TreeTy* GetEmptyTree() const { return NULL; }
//===--------------------------------------------------===//
// A bunch of quick helper functions used for reasoning
// about the properties of trees and their children.
// These have succinct names so that the balancing code
// is as terse (and readable) as possible.
//===--------------------------------------------------===//
private:
bool isEmpty(TreeTy* T) const {
return !T;
}
unsigned Height(TreeTy* T) const {
return T ? T->getHeight() : 0;
}
TreeTy* Left(TreeTy* T) const {
assert (T);
return T->getSafeLeft();
}
TreeTy* Right(TreeTy* T) const {
assert (T);
return T->getRight();
}
value_type_ref Value(TreeTy* T) const {
assert (T);
return T->Value;
}
unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
unsigned hl = Height(L);
unsigned hr = Height(R);
return ( hl > hr ? hl : hr ) + 1;
}
//===--------------------------------------------------===//
// "Create" is used to generate new tree roots that link
// to other trees. The functon may also simply move links
// in an existing root if that root is still marked mutable.
// This is necessary because otherwise our balancing code
// would leak memory as it would create nodes that are
// then discarded later before the finished tree is
// returned to the caller.
//===--------------------------------------------------===//
TreeTy* Create(TreeTy* L, value_type_ref V, TreeTy* R) {
FoldingSetNodeID ID;
unsigned height = IncrementHeight(L,R);
TreeTy::Profile(ID,L,R,height,V);
void* InsertPos;
if (TreeTy* T = Cache.FindNodeOrInsertPos(ID,InsertPos))
return T;
assert (InsertPos != NULL);
// FIXME: more intelligent calculation of alignment.
TreeTy* T = (TreeTy*) Allocator.Allocate(sizeof(*T),16);
new (T) TreeTy(L,R,V,height);
Cache.InsertNode(T,InsertPos);
return T;
}
TreeTy* Create(TreeTy* L, TreeTy* OldTree, TreeTy* R) {
assert (!isEmpty(OldTree));
if (OldTree->isMutable()) {
OldTree->setLeft(L);
OldTree->setRight(R);
OldTree->setHeight(IncrementHeight(L,R));
return OldTree;
}
else return Create(L, Value(OldTree), R);
}
/// Balance - Used by Add_internal and Remove_internal to
/// balance a newly created tree.
TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
unsigned hl = Height(L);
unsigned hr = Height(R);
if (hl > hr + 2) {
assert (!isEmpty(L) &&
"Left tree cannot be empty to have a height >= 2.");
TreeTy* LL = Left(L);
TreeTy* LR = Right(L);
if (Height(LL) >= Height(LR))
return Create(LL, L, Create(LR,V,R));
assert (!isEmpty(LR) &&
"LR cannot be empty because it has a height >= 1.");
TreeTy* LRL = Left(LR);
TreeTy* LRR = Right(LR);
return Create(Create(LL,L,LRL), LR, Create(LRR,V,R));
}
else if (hr > hl + 2) {
assert (!isEmpty(R) &&
"Right tree cannot be empty to have a height >= 2.");
TreeTy* RL = Left(R);
TreeTy* RR = Right(R);
if (Height(RR) >= Height(RL))
return Create(Create(L,V,RL), R, RR);
assert (!isEmpty(RL) &&
"RL cannot be empty because it has a height >= 1.");
TreeTy* RLL = Left(RL);
TreeTy* RLR = Right(RL);
return Create(Create(L,V,RLL), RL, Create(RLR,R,RR));
}
else
return Create(L,V,R);
}
/// Add_internal - Creates a new tree that includes the specified
/// data and the data from the original tree. If the original tree
/// already contained the data item, the original tree is returned.
TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
if (isEmpty(T))
return Create(T, V, T);
assert (!T->isMutable());
key_type_ref K = ImutInfo::KeyOfValue(V);
key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
if (ImutInfo::isEqual(K,KCurrent))
return Create(Left(T), V, Right(T));
else if (ImutInfo::isLess(K,KCurrent))
return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
else
return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
}
/// Remove_interal - Creates a new tree that includes all the data
/// from the original tree except the specified data. If the
/// specified data did not exist in the original tree, the original
/// tree is returned.
TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
if (isEmpty(T))
return T;
assert (!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
if (ImutInfo::isEqual(K,KCurrent))
return CombineLeftRightTrees(Left(T),Right(T));
else if (ImutInfo::isLess(K,KCurrent))
return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
else
return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
}
TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
if (isEmpty(L)) return R;
if (isEmpty(R)) return L;
TreeTy* OldNode;
TreeTy* NewRight = RemoveMinBinding(R,OldNode);
return Balance(L,Value(OldNode),NewRight);
}
TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
assert (!isEmpty(T));
if (isEmpty(Left(T))) {
NodeRemoved = T;
return Right(T);
}
return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
}
/// MarkImmutable - Clears the mutable bits of a root and all of its
/// descendants.
void MarkImmutable(TreeTy* T) {
if (!T || !T->isMutable())
return;
T->RemoveMutableFlag();
MarkImmutable(Left(T));
MarkImmutable(Right(T));
}
};
//===----------------------------------------------------------------------===//
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//
/// Generic profile template. The default behavior is to invoke the
/// profile method of an object. Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
typedef const T value_type;
typedef const T& value_type_ref;
static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
X.Profile(ID);
}
};
/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {
typedef const T value_type;
typedef const T& value_type_ref;
static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
ID.AddInteger(X);
}
};
#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)
#undef PROFILE_INTEGER_INFO
/// Generic profile trait for pointer types. We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
typedef const T* value_type;
typedef value_type value_type_ref;
static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddPointer(X);
}
};
//===----------------------------------------------------------------------===//
// Trait classes that contain element comparison operators and type
// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These
// inherit from the profile traits (ImutProfileInfo) to include operations
// for element profiling.
//===----------------------------------------------------------------------===//
/// ImutContainerInfo - Generic definition of comparison operations for
/// elements of immutable containers that defaults to using
/// std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
typedef typename ImutProfileInfo<T>::value_type value_type;
typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return std::equal_to<key_type>()(LHS,RHS);
}
static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
return std::less<key_type>()(LHS,RHS);
}
};
/// ImutContainerInfo - Specialization for pointer values to treat pointers
/// as references to unique objects. Pointers are thus compared by
/// their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
typedef typename ImutProfileInfo<T*>::value_type value_type;
typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return LHS == RHS;
}
static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
return LHS < RHS;
}
};
//===----------------------------------------------------------------------===//
// Immutable Set
//===----------------------------------------------------------------------===//
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
private:
typedef ImutAVLTree<ValInfo> TreeTy;
TreeTy* Root;
ImmutableSet(TreeTy* R) : Root(R) {}
public:
class Factory {
typename TreeTy::Factory F;
public:
Factory() {}
ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); }
ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
return ImmutableSet(F.Add(Old.Root,V));
}
ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
return ImmutableSet(F.Remove(Old.Root,V));
}
private:
Factory(const Factory& RHS) {};
void operator=(const Factory& RHS) {};
};
friend class Factory;
bool contains(const value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
bool operator==(ImmutableSet RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(ImmutableSet RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
bool isEmpty() const { return !Root; }
template <typename Callback>
void foreach(Callback& C) { if (Root) Root->foreach(C); }
template <typename Callback>
void foreach() { if (Root) { Callback C; Root->foreach(C); } }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
};
} // end namespace llvm
#endif