Implement a lot more functionality. Now loop invariant and linear

induction variables are correctly identified.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-06-22 02:24:38 +00:00
parent a4ef933a04
commit 364b147a0f

View File

@ -3,26 +3,271 @@
// This file implements induction variable cannonicalization of loops.
//
// Specifically, after this executes, the following is true:
// - There is a single induction variable for each loop (that used to contain
// at least one induction variable)
// - There is a single induction variable for each loop (at least loops that
// used to contain at least one induction variable)
// - This induction variable starts at 0 and steps by 1 per iteration
// - This induction variable is represented by the first PHI node in the
// Header block, allowing it to be found easily.
// - All other preexisting induction variables are adjusted to operate in
// terms of this primary induction variable
//
// This code assumes the following is true to perform its full job:
// - The CFG has been simplified to not have multiple entrances into an
// interval header. Interval headers should only have two predecessors,
// one from inside of the loop and one from outside of the loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Intervals.h"
#include "llvm/Opt/AllOpts.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Tools/STLExtras.h"
#include "llvm/iOther.h"
static bool ProcessInterval(cfg::Interval *Int) {
if (!Int->isLoop()) return false; // Not a loop? Ignore it!
// isLoopInvariant - Return true if the specified value/basic block source is
// an interval invariant computation.
//
static bool isLoopInvariant(cfg::Interval *Int, Value *V) {
assert(V->getValueType() == Value::ConstantVal ||
V->getValueType() == Value::InstructionVal ||
V->getValueType() == Value::MethodArgumentVal);
if (V->getValueType() != Value::InstructionVal)
return true; // Constants and arguments are always loop invariant
BasicBlock *ValueBlock = ((Instruction*)V)->getParent();
assert(ValueBlock && "Instruction not embedded in basic block!");
// For now, only consider values from outside of the interval, regardless of
// whether the expression could be lifted out of the loop by some LICM.
//
// TODO: invoke LICM library if we find out it would be useful.
//
return !Int->contains(ValueBlock);
}
// isLinearInductionVariableH - Return isLIV if the expression V is a linear
// expression defined in terms of loop invariant computations, and a single
// instance of the PHI node PN. Return isLIC if the expression V is a loop
// invariant computation. Return isNLIV if the expression is a negated linear
// induction variable. Return isOther if it is neither.
//
// Currently allowed operators are: ADD, SUB, NEG
// TODO: This should allow casts!
//
enum LIVType { isLIV, isLIC, isNLIV, isOther };
//
// neg - Negate the sign of a LIV expression.
inline LIVType neg(LIVType T) {
assert(T == isLIV || T == isNLIV && "Negate Only works on LIV expressions");
return T == isLIV ? isNLIV : isLIV;
}
//
static LIVType isLinearInductionVariableH(cfg::Interval *Int, Value *V,
PHINode *PN) {
if (V == PN) { return isLIV; } // PHI node references are (0+PHI)
if (isLoopInvariant(Int, V)) return isLIC;
assert(V->getValueType() == Value::InstructionVal &&
"loop noninvariant computations must be instructions!");
Instruction *I = (Instruction*)V;
switch (I->getInstType()) { // Handle each instruction seperately
case Instruction::Neg: {
Value *SubV = ((UnaryOperator*)I)->getOperand(0);
LIVType SubLIVType = isLinearInductionVariableH(Int, SubV, PN);
switch (SubLIVType) {
case isLIC: // Loop invariant & other computations remain the same
case isOther: return SubLIVType;
case isLIV: // Return the opposite signed LIV type
case isNLIV: return neg(isLIV);
}
}
case Instruction::Add:
case Instruction::Sub: {
Value *SubV1 = ((BinaryOperator*)I)->getOperand(0);
Value *SubV2 = ((BinaryOperator*)I)->getOperand(1);
LIVType SubLIVType1 = isLinearInductionVariableH(Int, SubV1, PN);
if (SubLIVType1 == isOther) return isOther; // Early bailout
LIVType SubLIVType2 = isLinearInductionVariableH(Int, SubV2, PN);
switch (SubLIVType2) {
case isOther: return isOther; // Unknown subexpression type
case isLIC: return SubLIVType1; // Constant offset, return type #1
case isLIV:
case isNLIV:
// So now we know that we have a linear induction variable on the RHS of
// the ADD or SUB instruction. SubLIVType1 cannot be isOther, so it is
// either a Loop Invariant computation, or a LIV type.
if (SubLIVType1 == isLIC) {
// Loop invariant computation, we know this is a LIV then.
return (I->getInstType() == Instruction::Add) ?
SubLIVType2 : neg(SubLIVType2);
}
// If the LHS is also a LIV Expression, we cannot add two LIVs together
if (I->getInstType() == Instruction::Add) return isOther;
// We can only subtract two LIVs if they are the same type, which yields
// a LIC, because the LIVs cancel each other out.
return (SubLIVType1 == SubLIVType2) ? isLIC : isOther;
}
// NOT REACHED
}
default: // Any other instruction is not a LINEAR induction var
return isOther;
}
}
// isLinearInductionVariable - Return true if the specified expression is a
// "linear induction variable", which is an expression involving a single
// instance of the PHI node and a loop invariant value that is added or
// subtracted to the PHI node. This is calculated by walking the SSA graph
//
static inline bool isLinearInductionVariable(cfg::Interval *Int, Value *V,
PHINode *PN) {
return isLinearInductionVariableH(Int, V, PN) == isLIV;
}
// isSimpleInductionVar - Return true iff the cannonical induction variable PN
// has an initializer of the constant value 0, and has a step size of constant
// 1.
static inline bool isSimpleInductionVar(PHINode *PN) {
assert(PN->getNumIncomingValues() == 2 && "Must have cannonical PHI node!");
Value *Initializer = PN->getIncomingValue(0);
if (Initializer->getValueType() != Value::ConstantVal)
return false;
// How do I check for 0 for any integral value? Use
// ConstPoolVal::getNullConstant?
Value *StepExpr = PN->getIncomingValue(1);
assert(StepExpr->getValueType() == Value::InstructionVal && "No ADD node?");
assert(((Instruction*)StepExpr)->getInstType() == Instruction::Add &&
"No ADD node? Not a cannonical PHI!");
BinaryOperator *I = (BinaryOperator*)StepExpr;
assert(I->getOperand(0)->getValueType() == Value::InstructionVal &&
((Instruction*)I->getOperand(0))->getInstType() == Instruction::PHINode &&
"PHI node should be first operand of ADD instruction!");
// Get the right hand side of the ADD node. See if it is a constant 1.
Value *StepSize = I->getOperand(1);
if (StepSize->getValueType() != Value::ConstantVal) return false;
// How do I check for 1 for any integral value?
cerr << "Found Looping Interval: " << Int; //->HeaderNode;
return false;
}
// ProcessInterval - This function is invoked once for each interval in the
// IntervalPartition of the program. It looks for auxilliary induction
// variables in loops. If it finds one, it:
// * Cannonicalizes the induction variable. This consists of:
// A. Making the first element of the PHI node be the loop invariant
// computation, and the second element be the linear induction portion.
// B. Changing the first element of the linear induction portion of the PHI
// node to be of the form ADD(PHI, <loop invariant expr>).
// * Add the induction variable PHI to a list of induction variables found.
//
// After this, a list of cannonical induction variables is known. This list
// is searched to see if there is an induction variable that counts from
// constant 0 with a step size of constant 1. If there is not one, one is
// injected into the loop. Thus a "simple" induction variable is always known
//
// One a simple induction variable is known, all other induction variables are
// modified to refer to the "simple" induction variable.
//
static bool ProcessInterval(cfg::Interval *Int) {
if (!Int->isLoop()) return false; // Not a loop? Ignore it!
vector<PHINode *> InductionVars;
BasicBlock *Header = Int->getHeaderNode();
// Loop over all of the PHI nodes in the interval header...
for (BasicBlock::InstListType::iterator I = Header->getInstList().begin(),
E = Header->getInstList().end();
I != E && (*I)->getInstType() == Instruction::PHINode; ++I) {
PHINode *PN = (PHINode*)*I;
if (PN->getNumIncomingValues() != 2) { // These should be eliminated by now.
cerr << "Found interval header with more than 2 predecessors! Ignoring\n";
return false; // Todo, make an assertion.
}
// For this to be an induction variable, one of the arguments must be a
// loop invariant expression, and the other must be an expression involving
// the PHI node, along with possible additions and subtractions of loop
// invariant values.
//
BasicBlock *BB1 = PN->getIncomingBlock(0);
Value *V1 = PN->getIncomingValue(0);
BasicBlock *BB2 = PN->getIncomingBlock(1);
Value *V2 = PN->getIncomingValue(1);
// Figure out which computation is loop invariant...
if (!isLoopInvariant(Int, V1)) {
// V1 is *not* loop invariant. Check to see if V2 is:
if (isLoopInvariant(Int, V2)) {
// They *are* loop invariant. Exchange BB1/BB2 and V1/V2 so that
// V1 is always the loop invariant computation.
swap(V1, V2); swap(BB1, BB2);
} else {
// Neither value is loop invariant. Must not be an induction variable.
// This case can happen if there is an unreachable loop in the CFG that
// has two tail loops in it that was not split by the cleanup phase
// before.
continue;
}
}
// At this point, we know that BB1/V1 are loop invariant. We don't know
// anything about BB2/V2. Check now to see if V2 is a linear induction
// variable.
//
cerr << "Found loop invariant computation: " << V1;
if (!isLinearInductionVariable(Int, V2, PN))
continue; // No, it is not a linear ind var, ignore the PHI node.
cerr << "Found linear induction variable: " << V2;
// TODO: Cannonicalize V2
// Add this PHI node to the list of induction variables found...
InductionVars.push_back(PN);
}
// No induction variables found?
if (InductionVars.empty()) return false;
cerr << "Found Interval Header with indvars: \n" << Header;
// Search to see if there is already a "simple" induction variable.
vector<PHINode*>::iterator It =
find_if(InductionVars.begin(), InductionVars.end(), isSimpleInductionVar);
// A simple induction variable was not found, inject one now...
if (It == InductionVars.end()) {
cerr << "WARNING, Induction variable injection not implemented yet!\n";
// TODO: Inject induction variable
It = InductionVars.end(); --It; // Point it at the new indvar
}
// Now we know that there is a simple induction variable *It. Simplify all
// of the other induction variables to use this induction variable as their
// counter, and destroy the PHI nodes that correspond to the old indvars.
//
// TODO
return false; // TODO: true;
}
// ProcessIntervalPartition - This function loops over the interval partition
// processing each interval with ProcessInterval
//
static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
// This currently just prints out information about the interval structure
// of the method...
@ -39,7 +284,10 @@ static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
ptr_fun(ProcessInterval));
}
// DoInductionVariableCannonicalize - Simplify induction variables in loops
// DoInductionVariableCannonicalize - Simplify induction variables in loops.
// This function loops over an interval partition of a program, reducing it
// until the graph is gone.
//
bool DoInductionVariableCannonicalize(Method *M) {
cfg::IntervalPartition *IP = new cfg::IntervalPartition(M);