mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 16:33:28 +00:00
Implement a lot more functionality. Now loop invariant and linear
induction variables are correctly identified. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
a4ef933a04
commit
364b147a0f
@ -3,26 +3,271 @@
|
||||
// This file implements induction variable cannonicalization of loops.
|
||||
//
|
||||
// Specifically, after this executes, the following is true:
|
||||
// - There is a single induction variable for each loop (that used to contain
|
||||
// at least one induction variable)
|
||||
// - There is a single induction variable for each loop (at least loops that
|
||||
// used to contain at least one induction variable)
|
||||
// - This induction variable starts at 0 and steps by 1 per iteration
|
||||
// - This induction variable is represented by the first PHI node in the
|
||||
// Header block, allowing it to be found easily.
|
||||
// - All other preexisting induction variables are adjusted to operate in
|
||||
// terms of this primary induction variable
|
||||
//
|
||||
// This code assumes the following is true to perform its full job:
|
||||
// - The CFG has been simplified to not have multiple entrances into an
|
||||
// interval header. Interval headers should only have two predecessors,
|
||||
// one from inside of the loop and one from outside of the loop.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Intervals.h"
|
||||
#include "llvm/Opt/AllOpts.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#include "llvm/Tools/STLExtras.h"
|
||||
#include "llvm/iOther.h"
|
||||
|
||||
static bool ProcessInterval(cfg::Interval *Int) {
|
||||
if (!Int->isLoop()) return false; // Not a loop? Ignore it!
|
||||
// isLoopInvariant - Return true if the specified value/basic block source is
|
||||
// an interval invariant computation.
|
||||
//
|
||||
static bool isLoopInvariant(cfg::Interval *Int, Value *V) {
|
||||
assert(V->getValueType() == Value::ConstantVal ||
|
||||
V->getValueType() == Value::InstructionVal ||
|
||||
V->getValueType() == Value::MethodArgumentVal);
|
||||
|
||||
if (V->getValueType() != Value::InstructionVal)
|
||||
return true; // Constants and arguments are always loop invariant
|
||||
|
||||
BasicBlock *ValueBlock = ((Instruction*)V)->getParent();
|
||||
assert(ValueBlock && "Instruction not embedded in basic block!");
|
||||
|
||||
// For now, only consider values from outside of the interval, regardless of
|
||||
// whether the expression could be lifted out of the loop by some LICM.
|
||||
//
|
||||
// TODO: invoke LICM library if we find out it would be useful.
|
||||
//
|
||||
return !Int->contains(ValueBlock);
|
||||
}
|
||||
|
||||
|
||||
// isLinearInductionVariableH - Return isLIV if the expression V is a linear
|
||||
// expression defined in terms of loop invariant computations, and a single
|
||||
// instance of the PHI node PN. Return isLIC if the expression V is a loop
|
||||
// invariant computation. Return isNLIV if the expression is a negated linear
|
||||
// induction variable. Return isOther if it is neither.
|
||||
//
|
||||
// Currently allowed operators are: ADD, SUB, NEG
|
||||
// TODO: This should allow casts!
|
||||
//
|
||||
enum LIVType { isLIV, isLIC, isNLIV, isOther };
|
||||
//
|
||||
// neg - Negate the sign of a LIV expression.
|
||||
inline LIVType neg(LIVType T) {
|
||||
assert(T == isLIV || T == isNLIV && "Negate Only works on LIV expressions");
|
||||
return T == isLIV ? isNLIV : isLIV;
|
||||
}
|
||||
//
|
||||
static LIVType isLinearInductionVariableH(cfg::Interval *Int, Value *V,
|
||||
PHINode *PN) {
|
||||
if (V == PN) { return isLIV; } // PHI node references are (0+PHI)
|
||||
if (isLoopInvariant(Int, V)) return isLIC;
|
||||
|
||||
assert(V->getValueType() == Value::InstructionVal &&
|
||||
"loop noninvariant computations must be instructions!");
|
||||
|
||||
Instruction *I = (Instruction*)V;
|
||||
switch (I->getInstType()) { // Handle each instruction seperately
|
||||
case Instruction::Neg: {
|
||||
Value *SubV = ((UnaryOperator*)I)->getOperand(0);
|
||||
LIVType SubLIVType = isLinearInductionVariableH(Int, SubV, PN);
|
||||
switch (SubLIVType) {
|
||||
case isLIC: // Loop invariant & other computations remain the same
|
||||
case isOther: return SubLIVType;
|
||||
case isLIV: // Return the opposite signed LIV type
|
||||
case isNLIV: return neg(isLIV);
|
||||
}
|
||||
}
|
||||
case Instruction::Add:
|
||||
case Instruction::Sub: {
|
||||
Value *SubV1 = ((BinaryOperator*)I)->getOperand(0);
|
||||
Value *SubV2 = ((BinaryOperator*)I)->getOperand(1);
|
||||
LIVType SubLIVType1 = isLinearInductionVariableH(Int, SubV1, PN);
|
||||
if (SubLIVType1 == isOther) return isOther; // Early bailout
|
||||
LIVType SubLIVType2 = isLinearInductionVariableH(Int, SubV2, PN);
|
||||
|
||||
switch (SubLIVType2) {
|
||||
case isOther: return isOther; // Unknown subexpression type
|
||||
case isLIC: return SubLIVType1; // Constant offset, return type #1
|
||||
case isLIV:
|
||||
case isNLIV:
|
||||
// So now we know that we have a linear induction variable on the RHS of
|
||||
// the ADD or SUB instruction. SubLIVType1 cannot be isOther, so it is
|
||||
// either a Loop Invariant computation, or a LIV type.
|
||||
if (SubLIVType1 == isLIC) {
|
||||
// Loop invariant computation, we know this is a LIV then.
|
||||
return (I->getInstType() == Instruction::Add) ?
|
||||
SubLIVType2 : neg(SubLIVType2);
|
||||
}
|
||||
|
||||
// If the LHS is also a LIV Expression, we cannot add two LIVs together
|
||||
if (I->getInstType() == Instruction::Add) return isOther;
|
||||
|
||||
// We can only subtract two LIVs if they are the same type, which yields
|
||||
// a LIC, because the LIVs cancel each other out.
|
||||
return (SubLIVType1 == SubLIVType2) ? isLIC : isOther;
|
||||
}
|
||||
// NOT REACHED
|
||||
}
|
||||
|
||||
default: // Any other instruction is not a LINEAR induction var
|
||||
return isOther;
|
||||
}
|
||||
}
|
||||
|
||||
// isLinearInductionVariable - Return true if the specified expression is a
|
||||
// "linear induction variable", which is an expression involving a single
|
||||
// instance of the PHI node and a loop invariant value that is added or
|
||||
// subtracted to the PHI node. This is calculated by walking the SSA graph
|
||||
//
|
||||
static inline bool isLinearInductionVariable(cfg::Interval *Int, Value *V,
|
||||
PHINode *PN) {
|
||||
return isLinearInductionVariableH(Int, V, PN) == isLIV;
|
||||
}
|
||||
|
||||
|
||||
// isSimpleInductionVar - Return true iff the cannonical induction variable PN
|
||||
// has an initializer of the constant value 0, and has a step size of constant
|
||||
// 1.
|
||||
static inline bool isSimpleInductionVar(PHINode *PN) {
|
||||
assert(PN->getNumIncomingValues() == 2 && "Must have cannonical PHI node!");
|
||||
Value *Initializer = PN->getIncomingValue(0);
|
||||
if (Initializer->getValueType() != Value::ConstantVal)
|
||||
return false;
|
||||
|
||||
// How do I check for 0 for any integral value? Use
|
||||
// ConstPoolVal::getNullConstant?
|
||||
|
||||
Value *StepExpr = PN->getIncomingValue(1);
|
||||
assert(StepExpr->getValueType() == Value::InstructionVal && "No ADD node?");
|
||||
assert(((Instruction*)StepExpr)->getInstType() == Instruction::Add &&
|
||||
"No ADD node? Not a cannonical PHI!");
|
||||
BinaryOperator *I = (BinaryOperator*)StepExpr;
|
||||
assert(I->getOperand(0)->getValueType() == Value::InstructionVal &&
|
||||
((Instruction*)I->getOperand(0))->getInstType() == Instruction::PHINode &&
|
||||
"PHI node should be first operand of ADD instruction!");
|
||||
|
||||
// Get the right hand side of the ADD node. See if it is a constant 1.
|
||||
Value *StepSize = I->getOperand(1);
|
||||
if (StepSize->getValueType() != Value::ConstantVal) return false;
|
||||
|
||||
// How do I check for 1 for any integral value?
|
||||
|
||||
cerr << "Found Looping Interval: " << Int; //->HeaderNode;
|
||||
return false;
|
||||
}
|
||||
|
||||
// ProcessInterval - This function is invoked once for each interval in the
|
||||
// IntervalPartition of the program. It looks for auxilliary induction
|
||||
// variables in loops. If it finds one, it:
|
||||
// * Cannonicalizes the induction variable. This consists of:
|
||||
// A. Making the first element of the PHI node be the loop invariant
|
||||
// computation, and the second element be the linear induction portion.
|
||||
// B. Changing the first element of the linear induction portion of the PHI
|
||||
// node to be of the form ADD(PHI, <loop invariant expr>).
|
||||
// * Add the induction variable PHI to a list of induction variables found.
|
||||
//
|
||||
// After this, a list of cannonical induction variables is known. This list
|
||||
// is searched to see if there is an induction variable that counts from
|
||||
// constant 0 with a step size of constant 1. If there is not one, one is
|
||||
// injected into the loop. Thus a "simple" induction variable is always known
|
||||
//
|
||||
// One a simple induction variable is known, all other induction variables are
|
||||
// modified to refer to the "simple" induction variable.
|
||||
//
|
||||
static bool ProcessInterval(cfg::Interval *Int) {
|
||||
if (!Int->isLoop()) return false; // Not a loop? Ignore it!
|
||||
|
||||
vector<PHINode *> InductionVars;
|
||||
|
||||
BasicBlock *Header = Int->getHeaderNode();
|
||||
// Loop over all of the PHI nodes in the interval header...
|
||||
for (BasicBlock::InstListType::iterator I = Header->getInstList().begin(),
|
||||
E = Header->getInstList().end();
|
||||
I != E && (*I)->getInstType() == Instruction::PHINode; ++I) {
|
||||
|
||||
PHINode *PN = (PHINode*)*I;
|
||||
if (PN->getNumIncomingValues() != 2) { // These should be eliminated by now.
|
||||
cerr << "Found interval header with more than 2 predecessors! Ignoring\n";
|
||||
return false; // Todo, make an assertion.
|
||||
}
|
||||
|
||||
// For this to be an induction variable, one of the arguments must be a
|
||||
// loop invariant expression, and the other must be an expression involving
|
||||
// the PHI node, along with possible additions and subtractions of loop
|
||||
// invariant values.
|
||||
//
|
||||
BasicBlock *BB1 = PN->getIncomingBlock(0);
|
||||
Value *V1 = PN->getIncomingValue(0);
|
||||
BasicBlock *BB2 = PN->getIncomingBlock(1);
|
||||
Value *V2 = PN->getIncomingValue(1);
|
||||
|
||||
// Figure out which computation is loop invariant...
|
||||
if (!isLoopInvariant(Int, V1)) {
|
||||
// V1 is *not* loop invariant. Check to see if V2 is:
|
||||
if (isLoopInvariant(Int, V2)) {
|
||||
// They *are* loop invariant. Exchange BB1/BB2 and V1/V2 so that
|
||||
// V1 is always the loop invariant computation.
|
||||
swap(V1, V2); swap(BB1, BB2);
|
||||
} else {
|
||||
// Neither value is loop invariant. Must not be an induction variable.
|
||||
// This case can happen if there is an unreachable loop in the CFG that
|
||||
// has two tail loops in it that was not split by the cleanup phase
|
||||
// before.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, we know that BB1/V1 are loop invariant. We don't know
|
||||
// anything about BB2/V2. Check now to see if V2 is a linear induction
|
||||
// variable.
|
||||
//
|
||||
cerr << "Found loop invariant computation: " << V1;
|
||||
|
||||
if (!isLinearInductionVariable(Int, V2, PN))
|
||||
continue; // No, it is not a linear ind var, ignore the PHI node.
|
||||
cerr << "Found linear induction variable: " << V2;
|
||||
|
||||
// TODO: Cannonicalize V2
|
||||
|
||||
// Add this PHI node to the list of induction variables found...
|
||||
InductionVars.push_back(PN);
|
||||
}
|
||||
|
||||
// No induction variables found?
|
||||
if (InductionVars.empty()) return false;
|
||||
|
||||
cerr << "Found Interval Header with indvars: \n" << Header;
|
||||
|
||||
// Search to see if there is already a "simple" induction variable.
|
||||
vector<PHINode*>::iterator It =
|
||||
find_if(InductionVars.begin(), InductionVars.end(), isSimpleInductionVar);
|
||||
|
||||
// A simple induction variable was not found, inject one now...
|
||||
if (It == InductionVars.end()) {
|
||||
cerr << "WARNING, Induction variable injection not implemented yet!\n";
|
||||
// TODO: Inject induction variable
|
||||
It = InductionVars.end(); --It; // Point it at the new indvar
|
||||
}
|
||||
|
||||
// Now we know that there is a simple induction variable *It. Simplify all
|
||||
// of the other induction variables to use this induction variable as their
|
||||
// counter, and destroy the PHI nodes that correspond to the old indvars.
|
||||
//
|
||||
// TODO
|
||||
|
||||
return false; // TODO: true;
|
||||
}
|
||||
|
||||
|
||||
// ProcessIntervalPartition - This function loops over the interval partition
|
||||
// processing each interval with ProcessInterval
|
||||
//
|
||||
static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
|
||||
// This currently just prints out information about the interval structure
|
||||
// of the method...
|
||||
@ -39,7 +284,10 @@ static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
|
||||
ptr_fun(ProcessInterval));
|
||||
}
|
||||
|
||||
// DoInductionVariableCannonicalize - Simplify induction variables in loops
|
||||
|
||||
// DoInductionVariableCannonicalize - Simplify induction variables in loops.
|
||||
// This function loops over an interval partition of a program, reducing it
|
||||
// until the graph is gone.
|
||||
//
|
||||
bool DoInductionVariableCannonicalize(Method *M) {
|
||||
cfg::IntervalPartition *IP = new cfg::IntervalPartition(M);
|
||||
|
Loading…
x
Reference in New Issue
Block a user