Implement AArch64 neon instructions class SIMD lsone and SIMD lone-post.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195078 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Hao Liu 2013-11-19 02:17:05 +00:00
parent e40e68add7
commit 36c7806f4e
14 changed files with 4800 additions and 191 deletions

View File

@ -117,11 +117,11 @@ private:
SDNode *SelectVTBL(SDNode *N, unsigned NumVecs, bool IsExt);
/// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4.
SDNode *SelectVLD(SDNode *N, unsigned NumVecs, bool isUpdating,
SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcode);
/// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4.
SDNode *SelectVST(SDNode *N, unsigned NumVecs, bool isUpdating,
SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes);
/// Form sequences of consecutive 64/128-bit registers for use in NEON
@ -135,6 +135,19 @@ private:
/// functions. Those should almost always be called instead.
SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
unsigned SubRegs[]);
/// Select NEON load-duplicate intrinsics. NumVecs should be 2, 3 or 4.
/// The opcode array specifies the instructions used for load.
SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes);
/// Select NEON load/store lane intrinsics. NumVecs should be 2, 3 or 4.
/// The opcode arrays specify the instructions used for load/store.
SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
unsigned NumVecs, const uint16_t *Opcodes);
SDValue getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
SDValue Operand);
};
}
@ -590,32 +603,84 @@ static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
case AArch64::ST1x4WB_8H_fixed: return AArch64::ST1x4WB_8H_register;
case AArch64::ST1x4WB_4S_fixed: return AArch64::ST1x4WB_4S_register;
case AArch64::ST1x4WB_2D_fixed: return AArch64::ST1x4WB_2D_register;
// Post-index of duplicate loads
case AArch64::LD2R_WB_8B_fixed: return AArch64::LD2R_WB_8B_register;
case AArch64::LD2R_WB_4H_fixed: return AArch64::LD2R_WB_4H_register;
case AArch64::LD2R_WB_2S_fixed: return AArch64::LD2R_WB_2S_register;
case AArch64::LD2R_WB_1D_fixed: return AArch64::LD2R_WB_1D_register;
case AArch64::LD2R_WB_16B_fixed: return AArch64::LD2R_WB_16B_register;
case AArch64::LD2R_WB_8H_fixed: return AArch64::LD2R_WB_8H_register;
case AArch64::LD2R_WB_4S_fixed: return AArch64::LD2R_WB_4S_register;
case AArch64::LD2R_WB_2D_fixed: return AArch64::LD2R_WB_2D_register;
case AArch64::LD3R_WB_8B_fixed: return AArch64::LD3R_WB_8B_register;
case AArch64::LD3R_WB_4H_fixed: return AArch64::LD3R_WB_4H_register;
case AArch64::LD3R_WB_2S_fixed: return AArch64::LD3R_WB_2S_register;
case AArch64::LD3R_WB_1D_fixed: return AArch64::LD3R_WB_1D_register;
case AArch64::LD3R_WB_16B_fixed: return AArch64::LD3R_WB_16B_register;
case AArch64::LD3R_WB_8H_fixed: return AArch64::LD3R_WB_8H_register;
case AArch64::LD3R_WB_4S_fixed: return AArch64::LD3R_WB_4S_register;
case AArch64::LD3R_WB_2D_fixed: return AArch64::LD3R_WB_2D_register;
case AArch64::LD4R_WB_8B_fixed: return AArch64::LD4R_WB_8B_register;
case AArch64::LD4R_WB_4H_fixed: return AArch64::LD4R_WB_4H_register;
case AArch64::LD4R_WB_2S_fixed: return AArch64::LD4R_WB_2S_register;
case AArch64::LD4R_WB_1D_fixed: return AArch64::LD4R_WB_1D_register;
case AArch64::LD4R_WB_16B_fixed: return AArch64::LD4R_WB_16B_register;
case AArch64::LD4R_WB_8H_fixed: return AArch64::LD4R_WB_8H_register;
case AArch64::LD4R_WB_4S_fixed: return AArch64::LD4R_WB_4S_register;
case AArch64::LD4R_WB_2D_fixed: return AArch64::LD4R_WB_2D_register;
// Post-index of lane loads
case AArch64::LD2LN_WB_B_fixed: return AArch64::LD2LN_WB_B_register;
case AArch64::LD2LN_WB_H_fixed: return AArch64::LD2LN_WB_H_register;
case AArch64::LD2LN_WB_S_fixed: return AArch64::LD2LN_WB_S_register;
case AArch64::LD2LN_WB_D_fixed: return AArch64::LD2LN_WB_D_register;
case AArch64::LD3LN_WB_B_fixed: return AArch64::LD3LN_WB_B_register;
case AArch64::LD3LN_WB_H_fixed: return AArch64::LD3LN_WB_H_register;
case AArch64::LD3LN_WB_S_fixed: return AArch64::LD3LN_WB_S_register;
case AArch64::LD3LN_WB_D_fixed: return AArch64::LD3LN_WB_D_register;
case AArch64::LD4LN_WB_B_fixed: return AArch64::LD4LN_WB_B_register;
case AArch64::LD4LN_WB_H_fixed: return AArch64::LD4LN_WB_H_register;
case AArch64::LD4LN_WB_S_fixed: return AArch64::LD4LN_WB_S_register;
case AArch64::LD4LN_WB_D_fixed: return AArch64::LD4LN_WB_D_register;
// Post-index of lane stores
case AArch64::ST2LN_WB_B_fixed: return AArch64::ST2LN_WB_B_register;
case AArch64::ST2LN_WB_H_fixed: return AArch64::ST2LN_WB_H_register;
case AArch64::ST2LN_WB_S_fixed: return AArch64::ST2LN_WB_S_register;
case AArch64::ST2LN_WB_D_fixed: return AArch64::ST2LN_WB_D_register;
case AArch64::ST3LN_WB_B_fixed: return AArch64::ST3LN_WB_B_register;
case AArch64::ST3LN_WB_H_fixed: return AArch64::ST3LN_WB_H_register;
case AArch64::ST3LN_WB_S_fixed: return AArch64::ST3LN_WB_S_register;
case AArch64::ST3LN_WB_D_fixed: return AArch64::ST3LN_WB_D_register;
case AArch64::ST4LN_WB_B_fixed: return AArch64::ST4LN_WB_B_register;
case AArch64::ST4LN_WB_H_fixed: return AArch64::ST4LN_WB_H_register;
case AArch64::ST4LN_WB_S_fixed: return AArch64::ST4LN_WB_S_register;
case AArch64::ST4LN_WB_D_fixed: return AArch64::ST4LN_WB_D_register;
}
return Opc; // If not one we handle, return it unchanged.
}
SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
bool isUpdating,
SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
EVT VT = N->getValueType(0);
unsigned OpcodeIndex;
switch (VT.getSimpleVT().SimpleTy) {
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector load type");
case MVT::v8i8: OpcodeIndex = 0; break;
case MVT::v4i16: OpcodeIndex = 1; break;
case MVT::v2f32:
case MVT::v2i32: OpcodeIndex = 2; break;
case MVT::v1f64:
case MVT::v1i64: OpcodeIndex = 3; break;
case MVT::v16i8: OpcodeIndex = 4; break;
case MVT::v8f16:
case MVT::v8i16: OpcodeIndex = 5; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 6; break;
case MVT::v2f64:
case MVT::v2i64: OpcodeIndex = 7; break;
}
unsigned Opc = Opcodes[OpcodeIndex];
@ -632,9 +697,8 @@ SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
Ops.push_back(N->getOperand(0)); // Push back the Chain
std::vector<EVT> ResTys;
bool is64BitVector = VT.is64BitVector();
SmallVector<EVT, 3> ResTys;
// Push back the type of return super register
if (NumVecs == 1)
ResTys.push_back(VT);
else if (NumVecs == 3)
@ -675,8 +739,8 @@ SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
return NULL;
}
SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
bool isUpdating,
SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
SDLoc dl(N);
@ -685,28 +749,20 @@ SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
unsigned AddrOpIdx = isUpdating ? 1 : 2;
unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
unsigned Vec0Idx = 3;
EVT VT = N->getOperand(Vec0Idx).getValueType();
unsigned OpcodeIndex;
switch (VT.getSimpleVT().SimpleTy) {
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector store type");
case MVT::v8i8: OpcodeIndex = 0; break;
case MVT::v4i16: OpcodeIndex = 1; break;
case MVT::v2f32:
case MVT::v2i32: OpcodeIndex = 2; break;
case MVT::v1f64:
case MVT::v1i64: OpcodeIndex = 3; break;
case MVT::v16i8: OpcodeIndex = 4; break;
case MVT::v8f16:
case MVT::v8i16: OpcodeIndex = 5; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 6; break;
case MVT::v2f64:
case MVT::v2i64: OpcodeIndex = 7; break;
}
unsigned Opc = Opcodes[OpcodeIndex];
std::vector<EVT> ResTys;
SmallVector<EVT, 2> ResTys;
if (isUpdating)
ResTys.push_back(MVT::i64);
ResTys.push_back(MVT::Other); // Type for the Chain
@ -720,7 +776,6 @@ SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
bool is64BitVector = VT.is64BitVector();
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
N->op_begin() + Vec0Idx + NumVecs);
@ -737,6 +792,172 @@ SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
return VSt;
}
SDValue
AArch64DAGToDAGISel::getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
SDValue Operand) {
SDNode *Reg = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, DL,
VT, VTD, MVT::Other,
CurDAG->getTargetConstant(0, MVT::i64),
Operand,
CurDAG->getTargetConstant(AArch64::sub_64, MVT::i32));
return SDValue(Reg, 0);
}
SDNode *AArch64DAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >=2 && NumVecs <= 4 && "Load Dup NumVecs out-of-range");
SDLoc dl(N);
EVT VT = N->getValueType(0);
unsigned OpcodeIndex;
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector duplicate lane load type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SDValue SuperReg;
SmallVector<SDValue, 6> Ops;
Ops.push_back(N->getOperand(1)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(2);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
Ops.push_back(N->getOperand(0)); // Push back the Chain
SmallVector<EVT, 3> ResTys;
// Push back the type of return super register
if (NumVecs == 3)
ResTys.push_back(MVT::Untyped);
else {
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
is64BitVector ? NumVecs : NumVecs * 2);
ResTys.push_back(ResTy);
}
if (isUpdating)
ResTys.push_back(MVT::i64); // Type of the updated register
ResTys.push_back(MVT::Other); // Type of the Chain
SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Transfer memoperands.
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
SuperReg = SDValue(VLdDup, 0);
unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
// Update uses of each registers in super register
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
ReplaceUses(SDValue(N, Vec),
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
// Update uses of the Chain
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
if (isUpdating)
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
return NULL;
}
// We only have 128-bit vector type of load/store lane instructions.
// If it is 64-bit vector, we also select it to the 128-bit instructions.
// Just use SUBREG_TO_REG to adapt the input to 128-bit vector and
// EXTRACT_SUBREG to get the 64-bit vector from the 128-bit vector output.
SDNode *AArch64DAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
SDLoc dl(N);
unsigned AddrOpIdx = isUpdating ? 1 : 2;
unsigned Vec0Idx = 3;
SDValue Chain = N->getOperand(0);
unsigned Lane =
cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
EVT VT = N->getOperand(Vec0Idx).getValueType();
bool is64BitVector = VT.is64BitVector();
EVT VT64; // 64-bit Vector Type
if (is64BitVector) {
VT64 = VT;
VT = EVT::getVectorVT(*CurDAG->getContext(), VT.getVectorElementType(),
VT.getVectorNumElements() * 2);
}
unsigned OpcodeIndex;
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = 0; break;
case 16: OpcodeIndex = 1; break;
case 32: OpcodeIndex = 2; break;
case 64: OpcodeIndex = 3; break;
default: llvm_unreachable("unhandled vector lane load/store type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SmallVector<EVT, 3> ResTys;
if (IsLoad) {
// Push back the type of return super register
if (NumVecs == 3)
ResTys.push_back(MVT::Untyped);
else {
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
is64BitVector ? NumVecs : NumVecs * 2);
ResTys.push_back(ResTy);
}
}
if (isUpdating)
ResTys.push_back(MVT::i64); // Type of the updated register
ResTys.push_back(MVT::Other); // Type of Chain
SmallVector<SDValue, 5> Ops;
Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(AddrOpIdx + 1);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
N->op_begin() + Vec0Idx + NumVecs);
if (is64BitVector)
for (unsigned i = 0; i < Regs.size(); i++)
Regs[i] = getTargetSubregToReg(AArch64::sub_64, dl, VT, VT64, Regs[i]);
SDValue SuperReg = createQTuple(Regs);
Ops.push_back(SuperReg); // Source Reg
SDValue LaneValue = CurDAG->getTargetConstant(Lane, MVT::i32);
Ops.push_back(LaneValue);
Ops.push_back(Chain); // Push back the Chain
SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
if (!IsLoad)
return VLdLn;
// Extract the subregisters.
SuperReg = SDValue(VLdLn, 0);
unsigned Sub0 = AArch64::qsub_0;
// Update uses of each registers in super register
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
SDValue SUB0 = CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg);
if (is64BitVector) {
SUB0 = CurDAG->getTargetExtractSubreg(AArch64::sub_64, dl, VT64, SUB0);
}
ReplaceUses(SDValue(N, Vec), SUB0);
}
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
if (isUpdating)
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
return NULL;
}
unsigned AArch64DAGToDAGISel::getTBLOpc(bool IsExt, bool Is64Bit,
unsigned NumOfVec) {
assert(NumOfVec >= 1 && NumOfVec <= 4 && "VST NumVecs out-of-range");
@ -955,7 +1176,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD1WB_16B_fixed, AArch64::LD1WB_8H_fixed,
AArch64::LD1WB_4S_fixed, AArch64::LD1WB_2D_fixed
};
return SelectVLD(Node, 1, true, Opcodes);
return SelectVLD(Node, true, 1, Opcodes);
}
case AArch64ISD::NEON_LD2_UPD: {
static const uint16_t Opcodes[] = {
@ -964,7 +1185,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD2WB_16B_fixed, AArch64::LD2WB_8H_fixed,
AArch64::LD2WB_4S_fixed, AArch64::LD2WB_2D_fixed
};
return SelectVLD(Node, 2, true, Opcodes);
return SelectVLD(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3_UPD: {
static const uint16_t Opcodes[] = {
@ -973,7 +1194,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD3WB_16B_fixed, AArch64::LD3WB_8H_fixed,
AArch64::LD3WB_4S_fixed, AArch64::LD3WB_2D_fixed
};
return SelectVLD(Node, 3, true, Opcodes);
return SelectVLD(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4_UPD: {
static const uint16_t Opcodes[] = {
@ -982,7 +1203,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD4WB_16B_fixed, AArch64::LD4WB_8H_fixed,
AArch64::LD4WB_4S_fixed, AArch64::LD4WB_2D_fixed
};
return SelectVLD(Node, 4, true, Opcodes);
return SelectVLD(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD1x2_UPD: {
static const uint16_t Opcodes[] = {
@ -991,7 +1212,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD1x2WB_16B_fixed, AArch64::LD1x2WB_8H_fixed,
AArch64::LD1x2WB_4S_fixed, AArch64::LD1x2WB_2D_fixed
};
return SelectVLD(Node, 2, true, Opcodes);
return SelectVLD(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD1x3_UPD: {
static const uint16_t Opcodes[] = {
@ -1000,7 +1221,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD1x3WB_16B_fixed, AArch64::LD1x3WB_8H_fixed,
AArch64::LD1x3WB_4S_fixed, AArch64::LD1x3WB_2D_fixed
};
return SelectVLD(Node, 3, true, Opcodes);
return SelectVLD(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD1x4_UPD: {
static const uint16_t Opcodes[] = {
@ -1009,7 +1230,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::LD1x4WB_16B_fixed, AArch64::LD1x4WB_8H_fixed,
AArch64::LD1x4WB_4S_fixed, AArch64::LD1x4WB_2D_fixed
};
return SelectVLD(Node, 4, true, Opcodes);
return SelectVLD(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST1_UPD: {
static const uint16_t Opcodes[] = {
@ -1018,7 +1239,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST1WB_16B_fixed, AArch64::ST1WB_8H_fixed,
AArch64::ST1WB_4S_fixed, AArch64::ST1WB_2D_fixed
};
return SelectVST(Node, 1, true, Opcodes);
return SelectVST(Node, true, 1, Opcodes);
}
case AArch64ISD::NEON_ST2_UPD: {
static const uint16_t Opcodes[] = {
@ -1027,7 +1248,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST2WB_16B_fixed, AArch64::ST2WB_8H_fixed,
AArch64::ST2WB_4S_fixed, AArch64::ST2WB_2D_fixed
};
return SelectVST(Node, 2, true, Opcodes);
return SelectVST(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST3_UPD: {
static const uint16_t Opcodes[] = {
@ -1036,7 +1257,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST3WB_16B_fixed, AArch64::ST3WB_8H_fixed,
AArch64::ST3WB_4S_fixed, AArch64::ST3WB_2D_fixed
};
return SelectVST(Node, 3, true, Opcodes);
return SelectVST(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST4_UPD: {
static const uint16_t Opcodes[] = {
@ -1045,7 +1266,100 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST4WB_16B_fixed, AArch64::ST4WB_8H_fixed,
AArch64::ST4WB_4S_fixed, AArch64::ST4WB_2D_fixed
};
return SelectVST(Node, 4, true, Opcodes);
return SelectVST(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD2DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD2R_8B, AArch64::LD2R_4H, AArch64::LD2R_2S,
AArch64::LD2R_1D, AArch64::LD2R_16B, AArch64::LD2R_8H,
AArch64::LD2R_4S, AArch64::LD2R_2D
};
return SelectVLDDup(Node, false, 2, Opcodes);
}
case AArch64ISD::NEON_LD3DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD3R_8B, AArch64::LD3R_4H, AArch64::LD3R_2S,
AArch64::LD3R_1D, AArch64::LD3R_16B, AArch64::LD3R_8H,
AArch64::LD3R_4S, AArch64::LD3R_2D
};
return SelectVLDDup(Node, false, 3, Opcodes);
}
case AArch64ISD::NEON_LD4DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD4R_8B, AArch64::LD4R_4H, AArch64::LD4R_2S,
AArch64::LD4R_1D, AArch64::LD4R_16B, AArch64::LD4R_8H,
AArch64::LD4R_4S, AArch64::LD4R_2D
};
return SelectVLDDup(Node, false, 4, Opcodes);
}
case AArch64ISD::NEON_LD2DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD2R_WB_8B_fixed, AArch64::LD2R_WB_4H_fixed,
AArch64::LD2R_WB_2S_fixed, AArch64::LD2R_WB_1D_fixed,
AArch64::LD2R_WB_16B_fixed, AArch64::LD2R_WB_8H_fixed,
AArch64::LD2R_WB_4S_fixed, AArch64::LD2R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD3R_WB_8B_fixed, AArch64::LD3R_WB_4H_fixed,
AArch64::LD3R_WB_2S_fixed, AArch64::LD3R_WB_1D_fixed,
AArch64::LD3R_WB_16B_fixed, AArch64::LD3R_WB_8H_fixed,
AArch64::LD3R_WB_4S_fixed, AArch64::LD3R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD4R_WB_8B_fixed, AArch64::LD4R_WB_4H_fixed,
AArch64::LD4R_WB_2S_fixed, AArch64::LD4R_WB_1D_fixed,
AArch64::LD4R_WB_16B_fixed, AArch64::LD4R_WB_8H_fixed,
AArch64::LD4R_WB_4S_fixed, AArch64::LD4R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD2LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD2LN_WB_B_fixed, AArch64::LD2LN_WB_H_fixed,
AArch64::LD2LN_WB_S_fixed, AArch64::LD2LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD3LN_WB_B_fixed, AArch64::LD3LN_WB_H_fixed,
AArch64::LD3LN_WB_S_fixed, AArch64::LD3LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD4LN_WB_B_fixed, AArch64::LD4LN_WB_H_fixed,
AArch64::LD4LN_WB_S_fixed, AArch64::LD4LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST2LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST2LN_WB_B_fixed, AArch64::ST2LN_WB_H_fixed,
AArch64::ST2LN_WB_S_fixed, AArch64::ST2LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST3LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST3LN_WB_B_fixed, AArch64::ST3LN_WB_H_fixed,
AArch64::ST3LN_WB_S_fixed, AArch64::ST3LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST4LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST4LN_WB_B_fixed, AArch64::ST4LN_WB_H_fixed,
AArch64::ST4LN_WB_S_fixed, AArch64::ST4LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST1x2_UPD: {
static const uint16_t Opcodes[] = {
@ -1054,7 +1368,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST1x2WB_16B_fixed, AArch64::ST1x2WB_8H_fixed,
AArch64::ST1x2WB_4S_fixed, AArch64::ST1x2WB_2D_fixed
};
return SelectVST(Node, 2, true, Opcodes);
return SelectVST(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST1x3_UPD: {
static const uint16_t Opcodes[] = {
@ -1063,7 +1377,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST1x3WB_16B_fixed, AArch64::ST1x3WB_8H_fixed,
AArch64::ST1x3WB_4S_fixed, AArch64::ST1x3WB_2D_fixed
};
return SelectVST(Node, 3, true, Opcodes);
return SelectVST(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST1x4_UPD: {
static const uint16_t Opcodes[] = {
@ -1072,7 +1386,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ST1x4WB_16B_fixed, AArch64::ST1x4WB_8H_fixed,
AArch64::ST1x4WB_4S_fixed, AArch64::ST1x4WB_2D_fixed
};
return SelectVST(Node, 4, true, Opcodes);
return SelectVST(Node, true, 4, Opcodes);
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
@ -1105,114 +1419,149 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
switch (IntNo) {
default:
break;
case Intrinsic::arm_neon_vld1: {
static const uint16_t Opcodes[] = { AArch64::LD1_8B, AArch64::LD1_4H,
AArch64::LD1_2S, AArch64::LD1_1D,
AArch64::LD1_16B, AArch64::LD1_8H,
AArch64::LD1_4S, AArch64::LD1_2D };
return SelectVLD(Node, 1, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::LD1_8B, AArch64::LD1_4H, AArch64::LD1_2S, AArch64::LD1_1D,
AArch64::LD1_16B, AArch64::LD1_8H, AArch64::LD1_4S, AArch64::LD1_2D
};
return SelectVLD(Node, false, 1, Opcodes);
}
case Intrinsic::arm_neon_vld2: {
static const uint16_t Opcodes[] = { AArch64::LD2_8B, AArch64::LD2_4H,
AArch64::LD2_2S, AArch64::LD1x2_1D,
AArch64::LD2_16B, AArch64::LD2_8H,
AArch64::LD2_4S, AArch64::LD2_2D };
return SelectVLD(Node, 2, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::LD2_8B, AArch64::LD2_4H, AArch64::LD2_2S, AArch64::LD1x2_1D,
AArch64::LD2_16B, AArch64::LD2_8H, AArch64::LD2_4S, AArch64::LD2_2D
};
return SelectVLD(Node, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vld3: {
static const uint16_t Opcodes[] = { AArch64::LD3_8B, AArch64::LD3_4H,
AArch64::LD3_2S, AArch64::LD1x3_1D,
AArch64::LD3_16B, AArch64::LD3_8H,
AArch64::LD3_4S, AArch64::LD3_2D };
return SelectVLD(Node, 3, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::LD3_8B, AArch64::LD3_4H, AArch64::LD3_2S, AArch64::LD1x3_1D,
AArch64::LD3_16B, AArch64::LD3_8H, AArch64::LD3_4S, AArch64::LD3_2D
};
return SelectVLD(Node, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vld4: {
static const uint16_t Opcodes[] = { AArch64::LD4_8B, AArch64::LD4_4H,
AArch64::LD4_2S, AArch64::LD1x4_1D,
AArch64::LD4_16B, AArch64::LD4_8H,
AArch64::LD4_4S, AArch64::LD4_2D };
return SelectVLD(Node, 4, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::LD4_8B, AArch64::LD4_4H, AArch64::LD4_2S, AArch64::LD1x4_1D,
AArch64::LD4_16B, AArch64::LD4_8H, AArch64::LD4_4S, AArch64::LD4_2D
};
return SelectVLD(Node, false, 4, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x2: {
static const uint16_t Opcodes[] = {
AArch64::LD1x2_8B, AArch64::LD1x2_4H, AArch64::LD1x2_2S,
AArch64::LD1x2_1D, AArch64::LD1x2_16B, AArch64::LD1x2_8H,
AArch64::LD1x2_4S, AArch64::LD1x2_2D
AArch64::LD1x2_8B, AArch64::LD1x2_4H, AArch64::LD1x2_2S,
AArch64::LD1x2_1D, AArch64::LD1x2_16B, AArch64::LD1x2_8H,
AArch64::LD1x2_4S, AArch64::LD1x2_2D
};
return SelectVLD(Node, 2, false, Opcodes);
return SelectVLD(Node, false, 2, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x3: {
static const uint16_t Opcodes[] = {
AArch64::LD1x3_8B, AArch64::LD1x3_4H, AArch64::LD1x3_2S,
AArch64::LD1x3_1D, AArch64::LD1x3_16B, AArch64::LD1x3_8H,
AArch64::LD1x3_4S, AArch64::LD1x3_2D
AArch64::LD1x3_8B, AArch64::LD1x3_4H, AArch64::LD1x3_2S,
AArch64::LD1x3_1D, AArch64::LD1x3_16B, AArch64::LD1x3_8H,
AArch64::LD1x3_4S, AArch64::LD1x3_2D
};
return SelectVLD(Node, 3, false, Opcodes);
return SelectVLD(Node, false, 3, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x4: {
static const uint16_t Opcodes[] = {
AArch64::LD1x4_8B, AArch64::LD1x4_4H, AArch64::LD1x4_2S,
AArch64::LD1x4_1D, AArch64::LD1x4_16B, AArch64::LD1x4_8H,
AArch64::LD1x4_4S, AArch64::LD1x4_2D
AArch64::LD1x4_8B, AArch64::LD1x4_4H, AArch64::LD1x4_2S,
AArch64::LD1x4_1D, AArch64::LD1x4_16B, AArch64::LD1x4_8H,
AArch64::LD1x4_4S, AArch64::LD1x4_2D
};
return SelectVLD(Node, 4, false, Opcodes);
return SelectVLD(Node, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vst1: {
static const uint16_t Opcodes[] = { AArch64::ST1_8B, AArch64::ST1_4H,
AArch64::ST1_2S, AArch64::ST1_1D,
AArch64::ST1_16B, AArch64::ST1_8H,
AArch64::ST1_4S, AArch64::ST1_2D };
return SelectVST(Node, 1, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::ST1_8B, AArch64::ST1_4H, AArch64::ST1_2S, AArch64::ST1_1D,
AArch64::ST1_16B, AArch64::ST1_8H, AArch64::ST1_4S, AArch64::ST1_2D
};
return SelectVST(Node, false, 1, Opcodes);
}
case Intrinsic::arm_neon_vst2: {
static const uint16_t Opcodes[] = { AArch64::ST2_8B, AArch64::ST2_4H,
AArch64::ST2_2S, AArch64::ST1x2_1D,
AArch64::ST2_16B, AArch64::ST2_8H,
AArch64::ST2_4S, AArch64::ST2_2D };
return SelectVST(Node, 2, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::ST2_8B, AArch64::ST2_4H, AArch64::ST2_2S, AArch64::ST1x2_1D,
AArch64::ST2_16B, AArch64::ST2_8H, AArch64::ST2_4S, AArch64::ST2_2D
};
return SelectVST(Node, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vst3: {
static const uint16_t Opcodes[] = { AArch64::ST3_8B, AArch64::ST3_4H,
AArch64::ST3_2S, AArch64::ST1x3_1D,
AArch64::ST3_16B, AArch64::ST3_8H,
AArch64::ST3_4S, AArch64::ST3_2D };
return SelectVST(Node, 3, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::ST3_8B, AArch64::ST3_4H, AArch64::ST3_2S, AArch64::ST1x3_1D,
AArch64::ST3_16B, AArch64::ST3_8H, AArch64::ST3_4S, AArch64::ST3_2D
};
return SelectVST(Node, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vst4: {
static const uint16_t Opcodes[] = { AArch64::ST4_8B, AArch64::ST4_4H,
AArch64::ST4_2S, AArch64::ST1x4_1D,
AArch64::ST4_16B, AArch64::ST4_8H,
AArch64::ST4_4S, AArch64::ST4_2D };
return SelectVST(Node, 4, false, Opcodes);
static const uint16_t Opcodes[] = {
AArch64::ST4_8B, AArch64::ST4_4H, AArch64::ST4_2S, AArch64::ST1x4_1D,
AArch64::ST4_16B, AArch64::ST4_8H, AArch64::ST4_4S, AArch64::ST4_2D
};
return SelectVST(Node, false, 4, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x2: {
static const uint16_t Opcodes[] = {
AArch64::ST1x2_8B, AArch64::ST1x2_4H, AArch64::ST1x2_2S,
AArch64::ST1x2_1D, AArch64::ST1x2_16B, AArch64::ST1x2_8H,
AArch64::ST1x2_4S, AArch64::ST1x2_2D
AArch64::ST1x2_8B, AArch64::ST1x2_4H, AArch64::ST1x2_2S,
AArch64::ST1x2_1D, AArch64::ST1x2_16B, AArch64::ST1x2_8H,
AArch64::ST1x2_4S, AArch64::ST1x2_2D
};
return SelectVST(Node, 2, false, Opcodes);
return SelectVST(Node, false, 2, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x3: {
static const uint16_t Opcodes[] = {
AArch64::ST1x3_8B, AArch64::ST1x3_4H, AArch64::ST1x3_2S,
AArch64::ST1x3_1D, AArch64::ST1x3_16B, AArch64::ST1x3_8H,
AArch64::ST1x3_4S, AArch64::ST1x3_2D
AArch64::ST1x3_8B, AArch64::ST1x3_4H, AArch64::ST1x3_2S,
AArch64::ST1x3_1D, AArch64::ST1x3_16B, AArch64::ST1x3_8H,
AArch64::ST1x3_4S, AArch64::ST1x3_2D
};
return SelectVST(Node, 3, false, Opcodes);
return SelectVST(Node, false, 3, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x4: {
static const uint16_t Opcodes[] = {
AArch64::ST1x4_8B, AArch64::ST1x4_4H, AArch64::ST1x4_2S,
AArch64::ST1x4_1D, AArch64::ST1x4_16B, AArch64::ST1x4_8H,
AArch64::ST1x4_4S, AArch64::ST1x4_2D
AArch64::ST1x4_8B, AArch64::ST1x4_4H, AArch64::ST1x4_2S,
AArch64::ST1x4_1D, AArch64::ST1x4_16B, AArch64::ST1x4_8H,
AArch64::ST1x4_4S, AArch64::ST1x4_2D
};
return SelectVST(Node, 4, false, Opcodes);
return SelectVST(Node, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vld2lane: {
static const uint16_t Opcodes[] = {
AArch64::LD2LN_B, AArch64::LD2LN_H, AArch64::LD2LN_S, AArch64::LD2LN_D
};
return SelectVLDSTLane(Node, true, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vld3lane: {
static const uint16_t Opcodes[] = {
AArch64::LD3LN_B, AArch64::LD3LN_H, AArch64::LD3LN_S, AArch64::LD3LN_D
};
return SelectVLDSTLane(Node, true, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vld4lane: {
static const uint16_t Opcodes[] = {
AArch64::LD4LN_B, AArch64::LD4LN_H, AArch64::LD4LN_S, AArch64::LD4LN_D
};
return SelectVLDSTLane(Node, true, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vst2lane: {
static const uint16_t Opcodes[] = {
AArch64::ST2LN_B, AArch64::ST2LN_H, AArch64::ST2LN_S, AArch64::ST2LN_D
};
return SelectVLDSTLane(Node, false, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vst3lane: {
static const uint16_t Opcodes[] = {
AArch64::ST3LN_B, AArch64::ST3LN_H, AArch64::ST3LN_S, AArch64::ST3LN_D
};
return SelectVLDSTLane(Node, false, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vst4lane: {
static const uint16_t Opcodes[] = {
AArch64::ST4LN_B, AArch64::ST4LN_H, AArch64::ST4LN_S, AArch64::ST4LN_D
};
return SelectVLDSTLane(Node, false, false, 4, Opcodes);
}
} // End of switch IntNo
break;
}
} // End of case ISD::INTRINSIC_VOID and :ISD::INTRINSIC_W_CHAIN
default:
break; // Let generic code handle it
}

View File

@ -949,6 +949,30 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
return "AArch64ISD::NEON_ST1x3_UPD";
case AArch64ISD::NEON_ST1x4_UPD:
return "AArch64ISD::NEON_ST1x4_UPD";
case AArch64ISD::NEON_LD2DUP:
return "AArch64ISD::NEON_LD2DUP";
case AArch64ISD::NEON_LD3DUP:
return "AArch64ISD::NEON_LD3DUP";
case AArch64ISD::NEON_LD4DUP:
return "AArch64ISD::NEON_LD4DUP";
case AArch64ISD::NEON_LD2DUP_UPD:
return "AArch64ISD::NEON_LD2DUP_UPD";
case AArch64ISD::NEON_LD3DUP_UPD:
return "AArch64ISD::NEON_LD3DUP_UPD";
case AArch64ISD::NEON_LD4DUP_UPD:
return "AArch64ISD::NEON_LD4DUP_UPD";
case AArch64ISD::NEON_LD2LN_UPD:
return "AArch64ISD::NEON_LD2LN_UPD";
case AArch64ISD::NEON_LD3LN_UPD:
return "AArch64ISD::NEON_LD3LN_UPD";
case AArch64ISD::NEON_LD4LN_UPD:
return "AArch64ISD::NEON_LD4LN_UPD";
case AArch64ISD::NEON_ST2LN_UPD:
return "AArch64ISD::NEON_ST2LN_UPD";
case AArch64ISD::NEON_ST3LN_UPD:
return "AArch64ISD::NEON_ST3LN_UPD";
case AArch64ISD::NEON_ST4LN_UPD:
return "AArch64ISD::NEON_ST4LN_UPD";
case AArch64ISD::NEON_VEXTRACT:
return "AArch64ISD::NEON_VEXTRACT";
default:
@ -3518,7 +3542,9 @@ static SDValue CombineBaseUpdate(SDNode *N,
return SDValue();
SelectionDAG &DAG = DCI.DAG;
unsigned AddrOpIdx = 2;
bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
SDValue Addr = N->getOperand(AddrOpIdx);
// Search for a use of the address operand that is an increment.
@ -3536,39 +3562,65 @@ static SDValue CombineBaseUpdate(SDNode *N,
// Find the new opcode for the updating load/store.
bool isLoad = true;
bool isLaneOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
NumVecs = 1; break;
case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
NumVecs = 2; break;
case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
NumVecs = 3; break;
case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
NumVecs = 4; break;
case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
NumVecs = 1; isLoad = false; break;
case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
NumVecs = 4; isLoad = false; break;
case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
NumVecs = 4; isLoad = false; break;
if (isIntrinsic) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
NumVecs = 1; break;
case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
NumVecs = 2; break;
case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
NumVecs = 3; break;
case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
NumVecs = 4; break;
case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
NumVecs = 1; isLoad = false; break;
case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
NumVecs = 4; isLoad = false; break;
case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
NumVecs = 4; isLoad = false; break;
case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD;
NumVecs = 2; isLaneOp = true; break;
case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD;
NumVecs = 3; isLaneOp = true; break;
case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD;
NumVecs = 4; isLaneOp = true; break;
case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD;
NumVecs = 2; isLoad = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD;
NumVecs = 3; isLoad = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD;
NumVecs = 4; isLoad = false; isLaneOp = true; break;
}
} else {
isLaneOp = true;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode for Neon base update");
case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
NumVecs = 2; break;
case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
NumVecs = 3; break;
case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
NumVecs = 4; break;
}
}
// Find the size of memory referenced by the load/store.
@ -3578,6 +3630,8 @@ static SDValue CombineBaseUpdate(SDNode *N,
else
VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (isLaneOp)
NumBytes /= VecTy.getVectorNumElements();
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
@ -3624,6 +3678,83 @@ static SDValue CombineBaseUpdate(SDNode *N,
return SDValue();
}
/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
/// If so, combine them to a vldN-dup operation and return true.
static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
SDNode *VLD = N->getOperand(0).getNode();
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return SDValue();
unsigned NumVecs = 0;
unsigned NewOpc = 0;
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::arm_neon_vld2lane) {
NumVecs = 2;
NewOpc = AArch64ISD::NEON_LD2DUP;
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
NumVecs = 3;
NewOpc = AArch64ISD::NEON_LD3DUP;
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
NumVecs = 4;
NewOpc = AArch64ISD::NEON_LD4DUP;
} else {
return SDValue();
}
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
// numbers match the load.
unsigned VLDLaneNo =
cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
// Ignore uses of the chain result.
if (UI.getUse().getResNo() == NumVecs)
continue;
SDNode *User = *UI;
if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
return SDValue();
}
// Create the vldN-dup node.
EVT Tys[5];
unsigned n;
for (n = 0; n < NumVecs; ++n)
Tys[n] = VT;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1);
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
VLDMemInt->getMemoryVT(),
VLDMemInt->getMemOperand());
// Update the uses.
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
unsigned ResNo = UI.getUse().getResNo();
// Ignore uses of the chain result.
if (ResNo == NumVecs)
continue;
SDNode *User = *UI;
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
}
// Now the vldN-lane intrinsic is dead except for its chain result.
// Update uses of the chain.
std::vector<SDValue> VLDDupResults;
for (unsigned n = 0; n < NumVecs; ++n)
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
DCI.CombineTo(VLD, VLDDupResults);
return SDValue(N, 0);
}
SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
@ -3637,6 +3768,12 @@ AArch64TargetLowering::PerformDAGCombine(SDNode *N,
return PerformShiftCombine(N, DCI, getSubtarget());
case ISD::INTRINSIC_WO_CHAIN:
return PerformIntrinsicCombine(N, DCI.DAG);
case AArch64ISD::NEON_VDUPLANE:
return CombineVLDDUP(N, DCI);
case AArch64ISD::NEON_LD2DUP:
case AArch64ISD::NEON_LD3DUP:
case AArch64ISD::NEON_LD4DUP:
return CombineBaseUpdate(N, DCI);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
@ -3648,12 +3785,18 @@ AArch64TargetLowering::PerformDAGCombine(SDNode *N,
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::aarch64_neon_vld1x2:
case Intrinsic::aarch64_neon_vld1x3:
case Intrinsic::aarch64_neon_vld1x4:
case Intrinsic::aarch64_neon_vst1x2:
case Intrinsic::aarch64_neon_vst1x3:
case Intrinsic::aarch64_neon_vst1x4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane:
return CombineBaseUpdate(N, DCI);
default:
break;
@ -4203,7 +4346,10 @@ bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
case Intrinsic::arm_neon_vld4:
case Intrinsic::aarch64_neon_vld1x2:
case Intrinsic::aarch64_neon_vld1x3:
case Intrinsic::aarch64_neon_vld1x4: {
case Intrinsic::aarch64_neon_vld1x4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
@ -4223,7 +4369,10 @@ bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
case Intrinsic::arm_neon_vst4:
case Intrinsic::aarch64_neon_vst1x2:
case Intrinsic::aarch64_neon_vst1x3:
case Intrinsic::aarch64_neon_vst1x4: {
case Intrinsic::aarch64_neon_vst1x4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
unsigned NumElts = 0;

View File

@ -152,8 +152,13 @@ namespace AArch64ISD {
// Vector extract
NEON_VEXTRACT,
// NEON duplicate lane loads
NEON_LD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
NEON_LD3DUP,
NEON_LD4DUP,
// NEON loads with post-increment base updates:
NEON_LD1_UPD = ISD::FIRST_TARGET_MEMORY_OPCODE,
NEON_LD1_UPD,
NEON_LD2_UPD,
NEON_LD3_UPD,
NEON_LD4_UPD,
@ -168,7 +173,22 @@ namespace AArch64ISD {
NEON_ST4_UPD,
NEON_ST1x2_UPD,
NEON_ST1x3_UPD,
NEON_ST1x4_UPD
NEON_ST1x4_UPD,
// NEON duplicate lane loads with post-increment base updates:
NEON_LD2DUP_UPD,
NEON_LD3DUP_UPD,
NEON_LD4DUP_UPD,
// NEON lane loads with post-increment base updates:
NEON_LD2LN_UPD,
NEON_LD3LN_UPD,
NEON_LD4LN_UPD,
// NEON lane store with post-increment base updates:
NEON_ST2LN_UPD,
NEON_ST3LN_UPD,
NEON_ST4LN_UPD
};
}

View File

@ -1297,6 +1297,85 @@ class NeonI_LdStMult_Post<bit q, bit l, bits<4> opcode, bits<2> size,
// Inherit Rt in 4-0
}
// Format AdvSIMD vector load Single N-element structure to all lanes
class NeonI_LdOne_Dup<bit q, bit r, bits<3> opcode, bits<2> size, dag outs,
dag ins, string asmstr, list<dag> patterns,
InstrItinClass itin>
: A64InstRtn<outs, ins, asmstr, patterns, itin>
{
let Inst{31} = 0b0;
let Inst{30} = q;
let Inst{29-23} = 0b0011010;
let Inst{22} = 0b1;
let Inst{21} = r;
let Inst{20-16} = 0b00000;
let Inst{15-13} = opcode;
let Inst{12} = 0b0;
let Inst{11-10} = size;
// Inherit Rn in 9-5
// Inherit Rt in 4-0
}
// Format AdvSIMD vector load/store Single N-element structure to/from one lane
class NeonI_LdStOne_Lane<bit l, bit r, bits<2> op2_1, bit op0, dag outs,
dag ins, string asmstr,
list<dag> patterns, InstrItinClass itin>
: A64InstRtn<outs, ins, asmstr, patterns, itin>
{
bits<4> lane;
let Inst{31} = 0b0;
let Inst{29-23} = 0b0011010;
let Inst{22} = l;
let Inst{21} = r;
let Inst{20-16} = 0b00000;
let Inst{15-14} = op2_1;
let Inst{13} = op0;
// Inherit Rn in 9-5
// Inherit Rt in 4-0
}
// Format AdvSIMD post-index vector load Single N-element structure to all lanes
class NeonI_LdOne_Dup_Post<bit q, bit r, bits<3> opcode, bits<2> size, dag outs,
dag ins, string asmstr, list<dag> patterns,
InstrItinClass itin>
: A64InstRtnm<outs, ins, asmstr, patterns, itin>
{
let Inst{31} = 0b0;
let Inst{30} = q;
let Inst{29-23} = 0b0011011;
let Inst{22} = 0b1;
let Inst{21} = r;
// Inherit Rm in 20-16
let Inst{15-13} = opcode;
let Inst{12} = 0b0;
let Inst{11-10} = size;
// Inherit Rn in 9-5
// Inherit Rt in 4-0
}
// Format AdvSIMD post-index vector load/store Single N-element structure
// to/from one lane
class NeonI_LdStOne_Lane_Post<bit l, bit r, bits<2> op2_1, bit op0, dag outs,
dag ins, string asmstr,
list<dag> patterns, InstrItinClass itin>
: A64InstRtnm<outs, ins, asmstr, patterns, itin>
{
bits<4> lane;
let Inst{31} = 0b0;
let Inst{29-23} = 0b0011011;
let Inst{22} = l;
let Inst{21} = r;
// Inherit Rm in 20-16
let Inst{15-14} = op2_1;
let Inst{13} = op0;
// Inherit Rn in 9-5
// Inherit Rt in 4-0
}
// Format AdvSIMD 3 scalar registers with different type
class NeonI_Scalar3Diff<bit u, bits<2> size, bits<4> opcode,

View File

@ -3456,6 +3456,51 @@ def ST1x4_1D : NeonI_STVList<0, 0b0010, 0b11, VQuad1D_operand, "st1">;
// The followings are post-index vector load/store multiple N-element
// structure(class SIMD lselem-post)
def exact1_asmoperand : AsmOperandClass {
let Name = "Exact1";
let PredicateMethod = "isExactImm<1>";
let RenderMethod = "addImmOperands";
}
def uimm_exact1 : Operand<i32>, ImmLeaf<i32, [{return Imm == 1;}]> {
let ParserMatchClass = exact1_asmoperand;
}
def exact2_asmoperand : AsmOperandClass {
let Name = "Exact2";
let PredicateMethod = "isExactImm<2>";
let RenderMethod = "addImmOperands";
}
def uimm_exact2 : Operand<i32>, ImmLeaf<i32, [{return Imm == 2;}]> {
let ParserMatchClass = exact2_asmoperand;
}
def exact3_asmoperand : AsmOperandClass {
let Name = "Exact3";
let PredicateMethod = "isExactImm<3>";
let RenderMethod = "addImmOperands";
}
def uimm_exact3 : Operand<i32>, ImmLeaf<i32, [{return Imm == 3;}]> {
let ParserMatchClass = exact3_asmoperand;
}
def exact4_asmoperand : AsmOperandClass {
let Name = "Exact4";
let PredicateMethod = "isExactImm<4>";
let RenderMethod = "addImmOperands";
}
def uimm_exact4 : Operand<i32>, ImmLeaf<i32, [{return Imm == 4;}]> {
let ParserMatchClass = exact4_asmoperand;
}
def exact6_asmoperand : AsmOperandClass {
let Name = "Exact6";
let PredicateMethod = "isExactImm<6>";
let RenderMethod = "addImmOperands";
}
def uimm_exact6 : Operand<i32>, ImmLeaf<i32, [{return Imm == 6;}]> {
let ParserMatchClass = exact6_asmoperand;
}
def exact8_asmoperand : AsmOperandClass {
let Name = "Exact8";
let PredicateMethod = "isExactImm<8>";
@ -3465,6 +3510,15 @@ def uimm_exact8 : Operand<i32>, ImmLeaf<i32, [{return Imm == 8;}]> {
let ParserMatchClass = exact8_asmoperand;
}
def exact12_asmoperand : AsmOperandClass {
let Name = "Exact12";
let PredicateMethod = "isExactImm<12>";
let RenderMethod = "addImmOperands";
}
def uimm_exact12 : Operand<i32>, ImmLeaf<i32, [{return Imm == 12;}]> {
let ParserMatchClass = exact12_asmoperand;
}
def exact16_asmoperand : AsmOperandClass {
let Name = "Exact16";
let PredicateMethod = "isExactImm<16>";
@ -3678,6 +3732,574 @@ defm ST1x4WB_1D : NeonI_STWB_VList<0, 0b0010, 0b11, VQuad1D_operand,
// End of post-index vector load/store multiple N-element structure
// (class SIMD lselem-post)
// The followings are vector load/store single N-element structure
// (class SIMD lsone).
def neon_uimm0_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm == 0;}]> {
let ParserMatchClass = neon_uimm0_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm1_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 2;}]> {
let ParserMatchClass = neon_uimm1_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm2_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 4;}]> {
let ParserMatchClass = neon_uimm2_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm3_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm4_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 16;}]> {
let ParserMatchClass = uimm4_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
class NeonI_LDN_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
RegisterOperand VecList, string asmop>
: NeonI_LdOne_Dup<q, r, opcode, size,
(outs VecList:$Rt), (ins GPR64xsp:$Rn),
asmop # "\t$Rt, [$Rn]",
[],
NoItinerary> {
let mayLoad = 1;
let neverHasSideEffects = 1;
}
multiclass LDN_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop> {
def _8B : NeonI_LDN_Dup<0, r, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"), asmop>;
def _4H : NeonI_LDN_Dup<0, r, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"), asmop>;
def _2S : NeonI_LDN_Dup<0, r, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"), asmop>;
def _1D : NeonI_LDN_Dup<0, r, opcode, 0b11,
!cast<RegisterOperand>(List # "1D_operand"), asmop>;
def _16B : NeonI_LDN_Dup<1, r, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"), asmop>;
def _8H : NeonI_LDN_Dup<1, r, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"), asmop>;
def _4S : NeonI_LDN_Dup<1, r, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"), asmop>;
def _2D : NeonI_LDN_Dup<1, r, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"), asmop>;
}
// Load single 1-element structure to all lanes of 1 register
defm LD1R : LDN_Dup_BHSD<0b0, 0b110, "VOne", "ld1r">;
// Load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
defm LD2R : LDN_Dup_BHSD<0b1, 0b110, "VPair", "ld2r">;
defm LD3R : LDN_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r">;
defm LD4R : LDN_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r">;
class LD1R_pattern <ValueType VTy, ValueType DTy, PatFrag LoadOp,
Instruction INST>
: Pat<(VTy (Neon_vdup (DTy (LoadOp GPR64xsp:$Rn)))),
(VTy (INST GPR64xsp:$Rn))>;
// Match all LD1R instructions
def : LD1R_pattern<v8i8, i32, extloadi8, LD1R_8B>;
def : LD1R_pattern<v16i8, i32, extloadi8, LD1R_16B>;
def : LD1R_pattern<v4i16, i32, extloadi16, LD1R_4H>;
def : LD1R_pattern<v8i16, i32, extloadi16, LD1R_8H>;
def : LD1R_pattern<v2i32, i32, load, LD1R_2S>;
def : LD1R_pattern<v2f32, f32, load, LD1R_2S>;
def : LD1R_pattern<v4i32, i32, load, LD1R_4S>;
def : LD1R_pattern<v4f32, f32, load, LD1R_4S>;
def : LD1R_pattern<v1i64, i64, load, LD1R_1D>;
def : LD1R_pattern<v1f64, f64, load, LD1R_1D>;
def : LD1R_pattern<v2i64, i64, load, LD1R_2D>;
def : LD1R_pattern<v2f64, f64, load, LD1R_2D>;
multiclass VectorList_Bare_BHSD<string PREFIX, int Count,
RegisterClass RegList> {
defm B : VectorList_operands<PREFIX, "B", Count, RegList>;
defm H : VectorList_operands<PREFIX, "H", Count, RegList>;
defm S : VectorList_operands<PREFIX, "S", Count, RegList>;
defm D : VectorList_operands<PREFIX, "D", Count, RegList>;
}
// Special vector list operand of 128-bit vectors with bare layout.
// i.e. only show ".b", ".h", ".s", ".d"
defm VOne : VectorList_Bare_BHSD<"VOne", 1, FPR128>;
defm VPair : VectorList_Bare_BHSD<"VPair", 2, QPair>;
defm VTriple : VectorList_Bare_BHSD<"VTriple", 3, QTriple>;
defm VQuad : VectorList_Bare_BHSD<"VQuad", 4, QQuad>;
class NeonI_LDN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane<1, r, op2_1, op0,
(outs VList:$Rt),
(ins GPR64xsp:$Rn, VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn]",
[],
NoItinerary> {
let mayLoad = 1;
let neverHasSideEffects = 1;
let hasExtraDefRegAllocReq = 1;
let Constraints = "$src = $Rt";
}
multiclass LDN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
def _B : NeonI_LDN_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H : NeonI_LDN_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S : NeonI_LDN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D : NeonI_LDN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Load single 1-element structure to one lane of 1 register.
defm LD1LN : LDN_Lane_BHSD<0b0, 0b0, "VOne", "ld1">;
// Load single N-element structure to one lane of N consecutive registers
// (N = 2,3,4)
defm LD2LN : LDN_Lane_BHSD<0b1, 0b0, "VPair", "ld2">;
defm LD3LN : LDN_Lane_BHSD<0b0, 0b1, "VTriple", "ld3">;
defm LD4LN : LDN_Lane_BHSD<0b1, 0b1, "VQuad", "ld4">;
multiclass LD1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
Operand ImmOp, Operand ImmOp2, PatFrag LoadOp,
Instruction INST> {
def : Pat<(VTy (vector_insert (VTy VPR64:$src),
(DTy (LoadOp GPR64xsp:$Rn)), (ImmOp:$lane))),
(VTy (EXTRACT_SUBREG
(INST GPR64xsp:$Rn,
(SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
ImmOp:$lane),
sub_64))>;
def : Pat<(VTy2 (vector_insert (VTy2 VPR128:$src),
(DTy (LoadOp GPR64xsp:$Rn)), (ImmOp2:$lane))),
(VTy2 (INST GPR64xsp:$Rn, VPR128:$src, ImmOp2:$lane))>;
}
// Match all LD1LN instructions
defm : LD1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
extloadi8, LD1LN_B>;
defm : LD1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
extloadi16, LD1LN_H>;
defm : LD1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
load, LD1LN_S>;
defm : LD1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
load, LD1LN_S>;
defm : LD1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
load, LD1LN_D>;
defm : LD1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
load, LD1LN_D>;
class NeonI_STN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane<0, r, op2_1, op0,
(outs), (ins GPR64xsp:$Rn, VList:$Rt, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn]",
[],
NoItinerary> {
let mayStore = 1;
let neverHasSideEffects = 1;
let hasExtraDefRegAllocReq = 1;
}
multiclass STN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
def _B : NeonI_STN_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H : NeonI_STN_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S : NeonI_STN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D : NeonI_STN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
neon_uimm1_bare, asmop>{
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Store single 1-element structure from one lane of 1 register.
defm ST1LN : STN_Lane_BHSD<0b0, 0b0, "VOne", "st1">;
// Store single N-element structure from one lane of N consecutive registers
// (N = 2,3,4)
defm ST2LN : STN_Lane_BHSD<0b1, 0b0, "VPair", "st2">;
defm ST3LN : STN_Lane_BHSD<0b0, 0b1, "VTriple", "st3">;
defm ST4LN : STN_Lane_BHSD<0b1, 0b1, "VQuad", "st4">;
multiclass ST1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
Operand ImmOp, Operand ImmOp2, PatFrag StoreOp,
Instruction INST> {
def : Pat<(StoreOp (DTy (vector_extract (VTy VPR64:$Rt), ImmOp:$lane)),
GPR64xsp:$Rn),
(INST GPR64xsp:$Rn,
(SUBREG_TO_REG (i64 0), VPR64:$Rt, sub_64),
ImmOp:$lane)>;
def : Pat<(StoreOp (DTy (vector_extract (VTy2 VPR128:$Rt), ImmOp2:$lane)),
GPR64xsp:$Rn),
(INST GPR64xsp:$Rn, VPR128:$Rt, ImmOp2:$lane)>;
}
// Match all ST1LN instructions
defm : ST1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
truncstorei8, ST1LN_B>;
defm : ST1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
truncstorei16, ST1LN_H>;
defm : ST1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
store, ST1LN_S>;
defm : ST1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
store, ST1LN_S>;
defm : ST1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
store, ST1LN_D>;
defm : ST1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
store, ST1LN_D>;
// End of vector load/store single N-element structure (class SIMD lsone).
// The following are post-index load/store single N-element instructions
// (class SIMD lsone-post)
multiclass NeonI_LDN_WB_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
RegisterOperand VecList, Operand ImmTy,
string asmop> {
let mayLoad = 1, neverHasSideEffects = 1, Constraints = "$wb = $Rn",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
def _fixed : NeonI_LdOne_Dup_Post<q, r, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt),
asmop # "\t$Rt, [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
def _register : NeonI_LdOne_Dup_Post<q, r, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm),
asmop # "\t$Rt, [$Rn], $Rm",
[],
NoItinerary>;
}
}
multiclass LDWB_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
defm _8B : NeonI_LDN_WB_Dup<0, r, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"),
uimm_b, asmop>;
defm _4H : NeonI_LDN_WB_Dup<0, r, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"),
uimm_h, asmop>;
defm _2S : NeonI_LDN_WB_Dup<0, r, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"),
uimm_s, asmop>;
defm _1D : NeonI_LDN_WB_Dup<0, r, opcode, 0b11,
!cast<RegisterOperand>(List # "1D_operand"),
uimm_d, asmop>;
defm _16B : NeonI_LDN_WB_Dup<1, r, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"),
uimm_b, asmop>;
defm _8H : NeonI_LDN_WB_Dup<1, r, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"),
uimm_h, asmop>;
defm _4S : NeonI_LDN_WB_Dup<1, r, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"),
uimm_s, asmop>;
defm _2D : NeonI_LDN_WB_Dup<1, r, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"),
uimm_d, asmop>;
}
// Post-index load single 1-element structure to all lanes of 1 register
defm LD1R_WB : LDWB_Dup_BHSD<0b0, 0b110, "VOne", "ld1r", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
defm LD2R_WB : LDWB_Dup_BHSD<0b1, 0b110, "VPair", "ld2r", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm LD3R_WB : LDWB_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm LD4R_WB : LDWB_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$Rn = $wb, $Rt = $src",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
class LDN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
(outs VList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt,
VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
class LDN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
(outs VList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm,
VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $Rm",
[],
NoItinerary>;
}
multiclass LD_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
def _B_fixed : LDN_WBFx_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _B_register : LDN_WBReg_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H_fixed : LDN_WBFx_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _H_register : LDN_WBReg_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S_fixed : LDN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _S_register : LDN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D_fixed : LDN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
def _D_register : LDN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Post-index load single 1-element structure to one lane of 1 register.
defm LD1LN_WB : LD_Lane_WB_BHSD<0b0, 0b0, "VOne", "ld1", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index load single N-element structure to one lane of N consecutive
// registers
// (N = 2,3,4)
defm LD2LN_WB : LD_Lane_WB_BHSD<0b1, 0b0, "VPair", "ld2", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm LD3LN_WB : LD_Lane_WB_BHSD<0b0, 0b1, "VTriple", "ld3", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm LD4LN_WB : LD_Lane_WB_BHSD<0b1, 0b1, "VQuad", "ld4", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
let mayStore = 1, neverHasSideEffects = 1,
hasExtraDefRegAllocReq = 1, Constraints = "$Rn = $wb",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
class STN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt,
VList:$Rt, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
class STN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm, VList:$Rt,
ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $Rm",
[],
NoItinerary>;
}
multiclass ST_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
def _B_fixed : STN_WBFx_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _B_register : STN_WBReg_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H_fixed : STN_WBFx_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _H_register : STN_WBReg_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S_fixed : STN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _S_register : STN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D_fixed : STN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
def _D_register : STN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Post-index store single 1-element structure from one lane of 1 register.
defm ST1LN_WB : ST_Lane_WB_BHSD<0b0, 0b0, "VOne", "st1", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index store single N-element structure from one lane of N consecutive
// registers (N = 2,3,4)
defm ST2LN_WB : ST_Lane_WB_BHSD<0b1, 0b0, "VPair", "st2", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm ST3LN_WB : ST_Lane_WB_BHSD<0b0, 0b1, "VTriple", "st3", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm ST4LN_WB : ST_Lane_WB_BHSD<0b1, 0b1, "VQuad", "st4", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
// End of post-index load/store single N-element instructions
// (class SIMD lsone-post)
// Neon Scalar instructions implementation
// Scalar Three Same
@ -4737,36 +5359,6 @@ defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfmaxnm,
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfminnm,
int_aarch64_neon_vpfminnmq, FMINNMPvv_S_2S, FMINNMPvv_D_2D>;
def neon_uimm0_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm == 0;}]> {
let ParserMatchClass = neon_uimm0_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm1_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 2;}]> {
let ParserMatchClass = neon_uimm1_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm2_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 4;}]> {
let ParserMatchClass = neon_uimm2_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm3_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm4_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 16;}]> {
let ParserMatchClass = uimm4_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
// Scalar by element Arithmetic
@ -5316,6 +5908,8 @@ def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
// Scalar Three Same
def neon_uimm3 : Operand<i64>,
ImmLeaf<i64, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;

View File

@ -1985,6 +1985,7 @@ bool AArch64AsmParser::TryParseVector(uint32_t &RegNum, SMLoc &RegEndLoc,
// Now there are two kinds of vector list when number of vector > 1:
// (1) {Vn.layout, Vn+1.layout, ... , Vm.layout}
// (2) {Vn.layout - Vm.layout}
// If the layout is like .b/.h/.s/.d, also parse the lane.
AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::ParseVectorList(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (Parser.getTok().isNot(AsmToken::LCurly)) {
@ -2065,7 +2066,7 @@ AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::ParseVectorList(
A64Layout::VectorLayout Layout = A64StringToVectorLayout(LayoutStr);
if (Count > 1) { // If count > 1, create vector list using super register.
bool IsVec64 = (Layout < A64Layout::_16B) ? true : false;
bool IsVec64 = (Layout < A64Layout::_16B);
static unsigned SupRegIDs[3][2] = {
{ AArch64::QPairRegClassID, AArch64::DPairRegClassID },
{ AArch64::QTripleRegClassID, AArch64::DTripleRegClassID },
@ -2080,7 +2081,22 @@ AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::ParseVectorList(
Operands.push_back(
AArch64Operand::CreateVectorList(Reg, Count, Layout, SLoc, ELoc));
return MatchOperand_Success;
if (Parser.getTok().is(AsmToken::LBrac)) {
uint32_t NumLanes = 0;
switch(Layout) {
case A64Layout::_B : NumLanes = 16; break;
case A64Layout::_H : NumLanes = 8; break;
case A64Layout::_S : NumLanes = 4; break;
case A64Layout::_D : NumLanes = 2; break;
default:
SMLoc Loc = getLexer().getLoc();
Error(Loc, "expected comma before next operand");
return MatchOperand_ParseFail;
}
return ParseNEONLane(Operands, NumLanes);
} else {
return MatchOperand_Success;
}
}
// FIXME: We would really like to be able to tablegen'erate this.

View File

@ -234,6 +234,10 @@ static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder);
static bool Check(DecodeStatus &Out, DecodeStatus In);
#include "AArch64GenDisassemblerTables.inc"
@ -414,7 +418,7 @@ static DecodeStatus DecodeGPR64noxzrRegisterClass(llvm::MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder) {
if (RegNo >= 30)
if (RegNo > 30)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR64noxzrRegClassID, RegNo);
@ -1102,3 +1106,426 @@ static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Insn,
return MCDisassembler::Success;
}
// Decode post-index vector load/store lane instructions.
// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
// operand is an immediate equal the the length of the changed bytes,
// or Rm is decoded to a GPR64noxzr register.
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
bool Is64bitVec = false;
bool IsLoadDup = false;
bool IsLoad = false;
unsigned TransferBytes = 0; // The total number of bytes transferred.
unsigned NumVecs = 0;
unsigned Opc = Inst.getOpcode();
switch (Opc) {
case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register: {
switch (Opc) {
case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
TransferBytes = 1; break;
case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
TransferBytes = 2; break;
case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
TransferBytes = 4; break;
case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register:
TransferBytes = 8; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register: {
switch (Opc) {
case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
TransferBytes = 1; break;
case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
TransferBytes = 2; break;
case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
TransferBytes = 4; break;
case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register:
TransferBytes = 8; break;
}
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register: {
switch (Opc) {
case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
TransferBytes = 2; break;
case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
TransferBytes = 4; break;
case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
TransferBytes = 8; break;
case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register:
TransferBytes = 16; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register: {
switch (Opc) {
case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
TransferBytes = 2; break;
case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
TransferBytes = 4; break;
case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
TransferBytes = 8; break;
case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register:
TransferBytes = 16; break;
}
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register: {
switch (Opc) {
case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
TransferBytes = 3; break;
case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
TransferBytes = 6; break;
case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
TransferBytes = 12; break;
case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register:
TransferBytes = 24; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_8H_register:
case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_4S_register:
case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register: {
switch (Opc) {
case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
TransferBytes = 3; break;
case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_8H_register:
TransferBytes = 6; break;
case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_4S_register:
TransferBytes = 12; break;
case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register:
TransferBytes = 24; break;
}
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register: {
switch (Opc) {
case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
TransferBytes = 4; break;
case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
TransferBytes = 8; break;
case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
TransferBytes = 16; break;
case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register:
TransferBytes = 32; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_8H_register:
case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_4S_register:
case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register: {
switch (Opc) {
case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
TransferBytes = 4; break;
case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_8H_register:
TransferBytes = 8; break;
case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_4S_register:
TransferBytes = 16; break;
case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register:
TransferBytes = 32; break;
}
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register: {
switch (Opc) {
case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register:
TransferBytes = 8; break;
}
IsLoad = true;
NumVecs = 1;
break;
}
case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register: {
switch (Opc) {
case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register:
TransferBytes = 16; break;
}
IsLoad = true;
NumVecs = 2;
break;
}
case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register: {
switch (Opc) {
case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register:
TransferBytes = 24; break;
}
IsLoad = true;
NumVecs = 3;
break;
}
case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register: {
switch (Opc) {
case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
TransferBytes = 3; break;
case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
TransferBytes = 6; break;
case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
TransferBytes = 12; break;
case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register:
TransferBytes = 24; break;
}
IsLoad = true;
NumVecs = 4;
break;
}
case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register: {
switch (Opc) {
case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register:
TransferBytes = 8; break;
}
NumVecs = 1;
break;
}
case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register: {
switch (Opc) {
case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register:
TransferBytes = 16; break;
}
NumVecs = 2;
break;
}
case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register: {
switch (Opc) {
case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register:
TransferBytes = 24; break;
}
NumVecs = 3;
break;
}
case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register: {
switch (Opc) {
case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
TransferBytes = 4; break;
case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
TransferBytes = 8; break;
case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
TransferBytes = 16; break;
case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register:
TransferBytes = 32; break;
}
NumVecs = 4;
break;
}
default:
return MCDisassembler::Fail;
} // End of switch (Opc)
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rm = fieldFromInstruction(Insn, 16, 5);
// Decode post-index of load duplicate lane
if (IsLoadDup) {
switch (NumVecs) {
case 1:
Is64bitVec ? DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is64bitVec ? DecodeDPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is64bitVec ? DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is64bitVec ? DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
Inst.addOperand(MCOperand::CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
return MCDisassembler::Success;
}
// Decode post-index of load/store lane
// Loads have a vector list as output.
if (IsLoad) {
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
Inst.addOperand(MCOperand::CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
// Decode the source vector list.
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode lane
unsigned Q = fieldFromInstruction(Insn, 30, 1);
unsigned S = fieldFromInstruction(Insn, 10, 3);
unsigned lane = 0;
switch (NumVecs) {
case 1:
lane = (Q << 3) & S;
break;
case 2:
lane = (Q << 2) & (S >> 1);
break;
case 3:
lane = (Q << 1) & (S >> 2);
break;
case 4:
lane = Q;
break;
}
Inst.addOperand(MCOperand::CreateImm(lane));
return MCDisassembler::Success;
}

View File

@ -521,7 +521,7 @@ void AArch64InstPrinter::printVectorList(const MCInst *MI, unsigned OpNum,
std::string LayoutStr = A64VectorLayoutToString(Layout);
O << "{";
if (Count > 1) { // Print sub registers separately
bool IsVec64 = (Layout < A64Layout::_16B) ? true : false;
bool IsVec64 = (Layout < A64Layout::_16B);
unsigned SubRegIdx = IsVec64 ? AArch64::dsub_0 : AArch64::qsub_0;
for (unsigned I = 0; I < Count; I++) {
std::string Name = getRegisterName(MRI.getSubReg(Reg, SubRegIdx++));

View File

@ -317,7 +317,14 @@ namespace A64Layout {
_16B,
_8H,
_4S,
_2D
_2D,
// Bare layout for the 128-bit vector
// (only show ".b", ".h", ".s", ".d" without vector number)
_B,
_H,
_S,
_D
};
}
@ -332,6 +339,10 @@ A64VectorLayoutToString(A64Layout::VectorLayout Layout) {
case A64Layout::_8H: return ".8h";
case A64Layout::_4S: return ".4s";
case A64Layout::_2D: return ".2d";
case A64Layout::_B: return ".b";
case A64Layout::_H: return ".h";
case A64Layout::_S: return ".s";
case A64Layout::_D: return ".d";
default: llvm_unreachable("Unknown Vector Layout");
}
}
@ -347,6 +358,10 @@ A64StringToVectorLayout(StringRef LayoutStr) {
.Case(".8h", A64Layout::_8H)
.Case(".4s", A64Layout::_4S)
.Case(".2d", A64Layout::_2D)
.Case(".b", A64Layout::_B)
.Case(".h", A64Layout::_H)
.Case(".s", A64Layout::_S)
.Case(".d", A64Layout::_D)
.Default(A64Layout::Invalid);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,319 @@
; RUN: llc < %s -verify-machineinstrs -mtriple=aarch64-none-linux-gnu -mattr=+neon | FileCheck %s
define { [2 x <16 x i8>] } @test_vld2q_dup_fx_update(i8* %a, i8** %ptr) {
; CHECK-LABEL: test_vld2q_dup_fx_update
; CHECK: ld2r {v{{[0-9]+}}.16b, v{{[0-9]+}}.16b}, [x{{[0-9]+|sp}}], #2
%1 = tail call { <16 x i8>, <16 x i8> } @llvm.arm.neon.vld2lane.v16i8(i8* %a, <16 x i8> undef, <16 x i8> undef, i32 0, i32 1)
%2 = extractvalue { <16 x i8>, <16 x i8> } %1, 0
%3 = shufflevector <16 x i8> %2, <16 x i8> undef, <16 x i32> zeroinitializer
%4 = extractvalue { <16 x i8>, <16 x i8> } %1, 1
%5 = shufflevector <16 x i8> %4, <16 x i8> undef, <16 x i32> zeroinitializer
%6 = insertvalue { [2 x <16 x i8>] } undef, <16 x i8> %3, 0, 0
%7 = insertvalue { [2 x <16 x i8>] } %6, <16 x i8> %5, 0, 1
%tmp1 = getelementptr i8* %a, i32 2
store i8* %tmp1, i8** %ptr
ret { [2 x <16 x i8>] } %7
}
define { [2 x <4 x i32>] } @test_vld2q_dup_reg_update(i32* %a, i32** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld2q_dup_reg_update
; CHECK: ld2r {v{{[0-9]+}}.4s, v{{[0-9]+}}.4s}, [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = bitcast i32* %a to i8*
%2 = tail call { <4 x i32>, <4 x i32> } @llvm.arm.neon.vld2lane.v4i32(i8* %1, <4 x i32> undef, <4 x i32> undef, i32 0, i32 4)
%3 = extractvalue { <4 x i32>, <4 x i32> } %2, 0
%4 = shufflevector <4 x i32> %3, <4 x i32> undef, <4 x i32> zeroinitializer
%5 = extractvalue { <4 x i32>, <4 x i32> } %2, 1
%6 = shufflevector <4 x i32> %5, <4 x i32> undef, <4 x i32> zeroinitializer
%7 = insertvalue { [2 x <4 x i32>] } undef, <4 x i32> %4, 0, 0
%8 = insertvalue { [2 x <4 x i32>] } %7, <4 x i32> %6, 0, 1
%tmp1 = getelementptr i32* %a, i32 %inc
store i32* %tmp1, i32** %ptr
ret { [2 x <4 x i32>] } %8
}
define { [3 x <4 x i16>] } @test_vld3_dup_fx_update(i16* %a, i16** %ptr) {
; CHECK-LABEL: test_vld3_dup_fx_update
; CHECK: ld3r {v{{[0-9]+}}.4h, v{{[0-9]+}}.4h, v{{[0-9]+}}.4h}, [x{{[0-9]+|sp}}], #6
%1 = bitcast i16* %a to i8*
%2 = tail call { <4 x i16>, <4 x i16>, <4 x i16> } @llvm.arm.neon.vld3lane.v4i16(i8* %1, <4 x i16> undef, <4 x i16> undef, <4 x i16> undef, i32 0, i32 2)
%3 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %2, 0
%4 = shufflevector <4 x i16> %3, <4 x i16> undef, <4 x i32> zeroinitializer
%5 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %2, 1
%6 = shufflevector <4 x i16> %5, <4 x i16> undef, <4 x i32> zeroinitializer
%7 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %2, 2
%8 = shufflevector <4 x i16> %7, <4 x i16> undef, <4 x i32> zeroinitializer
%9 = insertvalue { [3 x <4 x i16>] } undef, <4 x i16> %4, 0, 0
%10 = insertvalue { [3 x <4 x i16>] } %9, <4 x i16> %6, 0, 1
%11 = insertvalue { [3 x <4 x i16>] } %10, <4 x i16> %8, 0, 2
%tmp1 = getelementptr i16* %a, i32 3
store i16* %tmp1, i16** %ptr
ret { [3 x <4 x i16>] } %11
}
define { [3 x <8 x i8>] } @test_vld3_dup_reg_update(i8* %a, i8** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld3_dup_reg_update
; CHECK: ld3r {v{{[0-9]+}}.8b, v{{[0-9]+}}.8b, v{{[0-9]+}}.8b}, [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = tail call { <8 x i8>, <8 x i8>, <8 x i8> } @llvm.arm.neon.vld3lane.v8i8(i8* %a, <8 x i8> undef, <8 x i8> undef, <8 x i8> undef, i32 0, i32 1)
%2 = extractvalue { <8 x i8>, <8 x i8>, <8 x i8> } %1, 0
%3 = shufflevector <8 x i8> %2, <8 x i8> undef, <8 x i32> zeroinitializer
%4 = extractvalue { <8 x i8>, <8 x i8>, <8 x i8> } %1, 1
%5 = shufflevector <8 x i8> %4, <8 x i8> undef, <8 x i32> zeroinitializer
%6 = extractvalue { <8 x i8>, <8 x i8>, <8 x i8> } %1, 2
%7 = shufflevector <8 x i8> %6, <8 x i8> undef, <8 x i32> zeroinitializer
%8 = insertvalue { [3 x <8 x i8>] } undef, <8 x i8> %3, 0, 0
%9 = insertvalue { [3 x <8 x i8>] } %8, <8 x i8> %5, 0, 1
%10 = insertvalue { [3 x <8 x i8>] } %9, <8 x i8> %7, 0, 2
%tmp1 = getelementptr i8* %a, i32 %inc
store i8* %tmp1, i8** %ptr
ret { [3 x <8 x i8>] }%10
}
define { [4 x <2 x i32>] } @test_vld4_dup_fx_update(i32* %a, i32** %ptr) #0 {
; CHECK-LABEL: test_vld4_dup_fx_update
; CHECK: ld4r {v{{[0-9]+}}.2s, v{{[0-9]+}}.2s, v{{[0-9]+}}.2s, v{{[0-9]+}}.2s}, [x{{[0-9]+|sp}}], #16
%1 = bitcast i32* %a to i8*
%2 = tail call { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } @llvm.arm.neon.vld4lane.v2i32(i8* %1, <2 x i32> undef, <2 x i32> undef, <2 x i32> undef, <2 x i32> undef, i32 0, i32 4)
%3 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %2, 0
%4 = shufflevector <2 x i32> %3, <2 x i32> undef, <2 x i32> zeroinitializer
%5 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %2, 1
%6 = shufflevector <2 x i32> %5, <2 x i32> undef, <2 x i32> zeroinitializer
%7 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %2, 2
%8 = shufflevector <2 x i32> %7, <2 x i32> undef, <2 x i32> zeroinitializer
%9 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %2, 3
%10 = shufflevector <2 x i32> %9, <2 x i32> undef, <2 x i32> zeroinitializer
%11 = insertvalue { [4 x <2 x i32>] } undef, <2 x i32> %4, 0, 0
%12 = insertvalue { [4 x <2 x i32>] } %11, <2 x i32> %6, 0, 1
%13 = insertvalue { [4 x <2 x i32>] } %12, <2 x i32> %8, 0, 2
%14 = insertvalue { [4 x <2 x i32>] } %13, <2 x i32> %10, 0, 3
%tmp1 = getelementptr i32* %a, i32 4
store i32* %tmp1, i32** %ptr
ret { [4 x <2 x i32>] } %14
}
define { [4 x <2 x double>] } @test_vld4_dup_reg_update(double* %a, double** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld4_dup_reg_update
; CHECK: ld4r {v{{[0-9]+}}.2d, v{{[0-9]+}}.2d, v{{[0-9]+}}.2d, v{{[0-9]+}}.2d}, [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = bitcast double* %a to i8*
%2 = tail call { <2 x double>, <2 x double>, <2 x double>, <2 x double> } @llvm.arm.neon.vld4lane.v2f64(i8* %1, <2 x double> undef, <2 x double> undef, <2 x double> undef, <2 x double> undef, i32 0, i32 8)
%3 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %2, 0
%4 = shufflevector <2 x double> %3, <2 x double> undef, <2 x i32> zeroinitializer
%5 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %2, 1
%6 = shufflevector <2 x double> %5, <2 x double> undef, <2 x i32> zeroinitializer
%7 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %2, 2
%8 = shufflevector <2 x double> %7, <2 x double> undef, <2 x i32> zeroinitializer
%9 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %2, 3
%10 = shufflevector <2 x double> %9, <2 x double> undef, <2 x i32> zeroinitializer
%11 = insertvalue { [4 x <2 x double>] } undef, <2 x double> %4, 0, 0
%12 = insertvalue { [4 x <2 x double>] } %11, <2 x double> %6, 0, 1
%13 = insertvalue { [4 x <2 x double>] } %12, <2 x double> %8, 0, 2
%14 = insertvalue { [4 x <2 x double>] } %13, <2 x double> %10, 0, 3
%tmp1 = getelementptr double* %a, i32 %inc
store double* %tmp1, double** %ptr
ret { [4 x <2 x double>] } %14
}
define { [2 x <8 x i8>] } @test_vld2_lane_fx_update(i8* %a, [2 x <8 x i8>] %b, i8** %ptr) {
; CHECK-LABEL: test_vld2_lane_fx_update
; CHECK: ld2 {v{{[0-9]+}}.b, v{{[0-9]+}}.b}[7], [x{{[0-9]+|sp}}], #2
%1 = extractvalue [2 x <8 x i8>] %b, 0
%2 = extractvalue [2 x <8 x i8>] %b, 1
%3 = tail call { <8 x i8>, <8 x i8> } @llvm.arm.neon.vld2lane.v8i8(i8* %a, <8 x i8> %1, <8 x i8> %2, i32 7, i32 1)
%4 = extractvalue { <8 x i8>, <8 x i8> } %3, 0
%5 = extractvalue { <8 x i8>, <8 x i8> } %3, 1
%6 = insertvalue { [2 x <8 x i8>] } undef, <8 x i8> %4, 0, 0
%7 = insertvalue { [2 x <8 x i8>] } %6, <8 x i8> %5, 0, 1
%tmp1 = getelementptr i8* %a, i32 2
store i8* %tmp1, i8** %ptr
ret { [2 x <8 x i8>] } %7
}
define { [2 x <8 x i8>] } @test_vld2_lane_reg_update(i8* %a, [2 x <8 x i8>] %b, i8** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld2_lane_reg_update
; CHECK: ld2 {v{{[0-9]+}}.b, v{{[0-9]+}}.b}[6], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [2 x <8 x i8>] %b, 0
%2 = extractvalue [2 x <8 x i8>] %b, 1
%3 = tail call { <8 x i8>, <8 x i8> } @llvm.arm.neon.vld2lane.v8i8(i8* %a, <8 x i8> %1, <8 x i8> %2, i32 6, i32 1)
%4 = extractvalue { <8 x i8>, <8 x i8> } %3, 0
%5 = extractvalue { <8 x i8>, <8 x i8> } %3, 1
%6 = insertvalue { [2 x <8 x i8>] } undef, <8 x i8> %4, 0, 0
%7 = insertvalue { [2 x <8 x i8>] } %6, <8 x i8> %5, 0, 1
%tmp1 = getelementptr i8* %a, i32 %inc
store i8* %tmp1, i8** %ptr
ret { [2 x <8 x i8>] } %7
}
define { [3 x <2 x float>] } @test_vld3_lane_fx_update(float* %a, [3 x <2 x float>] %b, float** %ptr) {
; CHECK-LABEL: test_vld3_lane_fx_update
; CHECK: ld3 {v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s}[1], [x{{[0-9]+|sp}}], #12
%1 = extractvalue [3 x <2 x float>] %b, 0
%2 = extractvalue [3 x <2 x float>] %b, 1
%3 = extractvalue [3 x <2 x float>] %b, 2
%4 = bitcast float* %a to i8*
%5 = tail call { <2 x float>, <2 x float>, <2 x float> } @llvm.arm.neon.vld3lane.v2f32(i8* %4, <2 x float> %1, <2 x float> %2, <2 x float> %3, i32 1, i32 4)
%6 = extractvalue { <2 x float>, <2 x float>, <2 x float> } %5, 0
%7 = extractvalue { <2 x float>, <2 x float>, <2 x float> } %5, 1
%8 = extractvalue { <2 x float>, <2 x float>, <2 x float> } %5, 2
%9 = insertvalue { [3 x <2 x float>] } undef, <2 x float> %6, 0, 0
%10 = insertvalue { [3 x <2 x float>] } %9, <2 x float> %7, 0, 1
%11 = insertvalue { [3 x <2 x float>] } %10, <2 x float> %8, 0, 2
%tmp1 = getelementptr float* %a, i32 3
store float* %tmp1, float** %ptr
ret { [3 x <2 x float>] } %11
}
define { [3 x <4 x i16>] } @test_vld3_lane_reg_update(i16* %a, [3 x <4 x i16>] %b, i16** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld3_lane_reg_update
; CHECK: ld3 {v{{[0-9]+}}.h, v{{[0-9]+}}.h, v{{[0-9]+}}.h}[3], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [3 x <4 x i16>] %b, 0
%2 = extractvalue [3 x <4 x i16>] %b, 1
%3 = extractvalue [3 x <4 x i16>] %b, 2
%4 = bitcast i16* %a to i8*
%5 = tail call { <4 x i16>, <4 x i16>, <4 x i16> } @llvm.arm.neon.vld3lane.v4i16(i8* %4, <4 x i16> %1, <4 x i16> %2, <4 x i16> %3, i32 3, i32 2)
%6 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %5, 0
%7 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %5, 1
%8 = extractvalue { <4 x i16>, <4 x i16>, <4 x i16> } %5, 2
%9 = insertvalue { [3 x <4 x i16>] } undef, <4 x i16> %6, 0, 0
%10 = insertvalue { [3 x <4 x i16>] } %9, <4 x i16> %7, 0, 1
%11 = insertvalue { [3 x <4 x i16>] } %10, <4 x i16> %8, 0, 2
%tmp1 = getelementptr i16* %a, i32 %inc
store i16* %tmp1, i16** %ptr
ret { [3 x <4 x i16>] } %11
}
define { [4 x <2 x i32>] } @test_vld4_lane_fx_update(i32* readonly %a, [4 x <2 x i32>] %b, i32** %ptr) {
; CHECK-LABEL: test_vld4_lane_fx_update
; CHECK: ld4 {v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s}[1], [x{{[0-9]+|sp}}], #16
%1 = extractvalue [4 x <2 x i32>] %b, 0
%2 = extractvalue [4 x <2 x i32>] %b, 1
%3 = extractvalue [4 x <2 x i32>] %b, 2
%4 = extractvalue [4 x <2 x i32>] %b, 3
%5 = bitcast i32* %a to i8*
%6 = tail call { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } @llvm.arm.neon.vld4lane.v2i32(i8* %5, <2 x i32> %1, <2 x i32> %2, <2 x i32> %3, <2 x i32> %4, i32 1, i32 4)
%7 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %6, 0
%8 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %6, 1
%9 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %6, 2
%10 = extractvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %6, 3
%11 = insertvalue { [4 x <2 x i32>] } undef, <2 x i32> %7, 0, 0
%12 = insertvalue { [4 x <2 x i32>] } %11, <2 x i32> %8, 0, 1
%13 = insertvalue { [4 x <2 x i32>] } %12, <2 x i32> %9, 0, 2
%14 = insertvalue { [4 x <2 x i32>] } %13, <2 x i32> %10, 0, 3
%tmp1 = getelementptr i32* %a, i32 4
store i32* %tmp1, i32** %ptr
ret { [4 x <2 x i32>] } %14
}
define { [4 x <2 x double>] } @test_vld4_lane_reg_update(double* readonly %a, [4 x <2 x double>] %b, double** %ptr, i32 %inc) {
; CHECK-LABEL: test_vld4_lane_reg_update
; CHECK: ld4 {v{{[0-9]+}}.d, v{{[0-9]+}}.d, v{{[0-9]+}}.d, v{{[0-9]+}}.d}[1], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [4 x <2 x double>] %b, 0
%2 = extractvalue [4 x <2 x double>] %b, 1
%3 = extractvalue [4 x <2 x double>] %b, 2
%4 = extractvalue [4 x <2 x double>] %b, 3
%5 = bitcast double* %a to i8*
%6 = tail call { <2 x double>, <2 x double>, <2 x double>, <2 x double> } @llvm.arm.neon.vld4lane.v2f64(i8* %5, <2 x double> %1, <2 x double> %2, <2 x double> %3, <2 x double> %4, i32 1, i32 8)
%7 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %6, 0
%8 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %6, 1
%9 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %6, 2
%10 = extractvalue { <2 x double>, <2 x double>, <2 x double>, <2 x double> } %6, 3
%11 = insertvalue { [4 x <2 x double>] } undef, <2 x double> %7, 0, 0
%12 = insertvalue { [4 x <2 x double>] } %11, <2 x double> %8, 0, 1
%13 = insertvalue { [4 x <2 x double>] } %12, <2 x double> %9, 0, 2
%14 = insertvalue { [4 x <2 x double>] } %13, <2 x double> %10, 0, 3
%tmp1 = getelementptr double* %a, i32 %inc
store double* %tmp1, double** %ptr
ret { [4 x <2 x double>] } %14
}
define void @test_vst2_lane_fx_update(i8* %a, [2 x <8 x i8>] %b, i8** %ptr) {
; CHECK-LABEL: test_vst2_lane_fx_update
; CHECK: st2 {v{{[0-9]+}}.b, v{{[0-9]+}}.b}[7], [x{{[0-9]+|sp}}], #2
%1 = extractvalue [2 x <8 x i8>] %b, 0
%2 = extractvalue [2 x <8 x i8>] %b, 1
call void @llvm.arm.neon.vst2lane.v8i8(i8* %a, <8 x i8> %1, <8 x i8> %2, i32 7, i32 1)
%tmp1 = getelementptr i8* %a, i32 2
store i8* %tmp1, i8** %ptr
ret void
}
define void @test_vst2_lane_reg_update(i32* %a, [2 x <2 x i32>] %b.coerce, i32** %ptr, i32 %inc) {
; CHECK-LABEL: test_vst2_lane_reg_update
; CHECK: st2 {v{{[0-9]+}}.s, v{{[0-9]+}}.s}[1], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [2 x <2 x i32>] %b.coerce, 0
%2 = extractvalue [2 x <2 x i32>] %b.coerce, 1
%3 = bitcast i32* %a to i8*
tail call void @llvm.arm.neon.vst2lane.v2i32(i8* %3, <2 x i32> %1, <2 x i32> %2, i32 1, i32 4)
%tmp1 = getelementptr i32* %a, i32 %inc
store i32* %tmp1, i32** %ptr
ret void
}
define void @test_vst3_lane_fx_update(float* %a, [3 x <4 x float>] %b, float** %ptr) {
; CHECK-LABEL: test_vst3_lane_fx_update
; CHECK: st3 {v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s}[3], [x{{[0-9]+|sp}}], #12
%1 = extractvalue [3 x <4 x float>] %b, 0
%2 = extractvalue [3 x <4 x float>] %b, 1
%3 = extractvalue [3 x <4 x float>] %b, 2
%4 = bitcast float* %a to i8*
call void @llvm.arm.neon.vst3lane.v4f32(i8* %4, <4 x float> %1, <4 x float> %2, <4 x float> %3, i32 3, i32 4)
%tmp1 = getelementptr float* %a, i32 3
store float* %tmp1, float** %ptr
ret void
}
; Function Attrs: nounwind
define void @test_vst3_lane_reg_update(i16* %a, [3 x <4 x i16>] %b, i16** %ptr, i32 %inc) {
; CHECK-LABEL: test_vst3_lane_reg_update
; CHECK: st3 {v{{[0-9]+}}.h, v{{[0-9]+}}.h, v{{[0-9]+}}.h}[3], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [3 x <4 x i16>] %b, 0
%2 = extractvalue [3 x <4 x i16>] %b, 1
%3 = extractvalue [3 x <4 x i16>] %b, 2
%4 = bitcast i16* %a to i8*
tail call void @llvm.arm.neon.vst3lane.v4i16(i8* %4, <4 x i16> %1, <4 x i16> %2, <4 x i16> %3, i32 3, i32 2)
%tmp1 = getelementptr i16* %a, i32 %inc
store i16* %tmp1, i16** %ptr
ret void
}
define void @test_vst4_lane_fx_update(double* %a, [4 x <2 x double>] %b.coerce, double** %ptr) {
; CHECK-LABEL: test_vst4_lane_fx_update
; CHECK: st4 {v{{[0-9]+}}.d, v{{[0-9]+}}.d, v{{[0-9]+}}.d, v{{[0-9]+}}.d}[1], [x{{[0-9]+|sp}}], #32
%1 = extractvalue [4 x <2 x double>] %b.coerce, 0
%2 = extractvalue [4 x <2 x double>] %b.coerce, 1
%3 = extractvalue [4 x <2 x double>] %b.coerce, 2
%4 = extractvalue [4 x <2 x double>] %b.coerce, 3
%5 = bitcast double* %a to i8*
tail call void @llvm.arm.neon.vst4lane.v2f64(i8* %5, <2 x double> %1, <2 x double> %2, <2 x double> %3, <2 x double> %4, i32 1, i32 8)
%tmp1 = getelementptr double* %a, i32 4
store double* %tmp1, double** %ptr
ret void
}
define void @test_vst4_lane_reg_update(float* %a, [4 x <2 x float>] %b.coerce, float** %ptr, i32 %inc) {
; CHECK-LABEL: test_vst4_lane_reg_update
; CHECK: st4 {v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s, v{{[0-9]+}}.s}[1], [x{{[0-9]+|sp}}], x{{[0-9]+}}
%1 = extractvalue [4 x <2 x float>] %b.coerce, 0
%2 = extractvalue [4 x <2 x float>] %b.coerce, 1
%3 = extractvalue [4 x <2 x float>] %b.coerce, 2
%4 = extractvalue [4 x <2 x float>] %b.coerce, 3
%5 = bitcast float* %a to i8*
tail call void @llvm.arm.neon.vst4lane.v2f32(i8* %5, <2 x float> %1, <2 x float> %2, <2 x float> %3, <2 x float> %4, i32 1, i32 4)
%tmp1 = getelementptr float* %a, i32 %inc
store float* %tmp1, float** %ptr
ret void
}
declare { <8 x i8>, <8 x i8> } @llvm.arm.neon.vld2lane.v8i8(i8*, <8 x i8>, <8 x i8>, i32, i32)
declare { <16 x i8>, <16 x i8> } @llvm.arm.neon.vld2lane.v16i8(i8*, <16 x i8>, <16 x i8>, i32, i32)
declare { <4 x i32>, <4 x i32> } @llvm.arm.neon.vld2lane.v4i32(i8*, <4 x i32>, <4 x i32>, i32, i32)
declare { <4 x i16>, <4 x i16>, <4 x i16> } @llvm.arm.neon.vld3lane.v4i16(i8*, <4 x i16>, <4 x i16>, <4 x i16>, i32, i32)
declare { <8 x i8>, <8 x i8>, <8 x i8> } @llvm.arm.neon.vld3lane.v8i8(i8*, <8 x i8>, <8 x i8>, <8 x i8>, i32, i32)
declare { <2 x float>, <2 x float>, <2 x float> } @llvm.arm.neon.vld3lane.v2f32(i8*, <2 x float>, <2 x float>, <2 x float>, i32, i32)
declare { <2 x double>, <2 x double>, <2 x double>, <2 x double> } @llvm.arm.neon.vld4lane.v2f64(i8*, <2 x double>, <2 x double>, <2 x double>, <2 x double>, i32, i32)
declare { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } @llvm.arm.neon.vld4lane.v2i32(i8*, <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32>, i32, i32)
declare void @llvm.arm.neon.vst2lane.v8i8(i8*, <8 x i8>, <8 x i8>, i32, i32)
declare void @llvm.arm.neon.vst2lane.v2i32(i8*, <2 x i32>, <2 x i32>, i32, i32)
declare void @llvm.arm.neon.vst3lane.v4f32(i8*, <4 x float>, <4 x float>, <4 x float>, i32, i32)
declare void @llvm.arm.neon.vst3lane.v4i16(i8*, <4 x i16>, <4 x i16>, <4 x i16>, i32, i32)
declare void @llvm.arm.neon.vst4lane.v2f32(i8*, <2 x float>, <2 x float>, <2 x float>, <2 x float>, i32, i32)
declare void @llvm.arm.neon.vst4lane.v2f64(i8*, <2 x double>, <2 x double>, <2 x double>, <2 x double>, i32, i32)

View File

@ -4170,6 +4170,125 @@
// CHECK-ERROR: st4 {v31.2d, v0.2d, v1.2d, v2.1d}, [x3], x1
// CHECK-ERROR: ^
//------------------------------------------------------------------------------
// Load single N-element structure to all lanes of N consecutive
// registers (N = 1,2,3,4)
//------------------------------------------------------------------------------
ld1r {x1}, [x0]
ld2r {v31.4s, v0.2s}, [sp]
ld3r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0]
ld4r {v31.2s, v0.2s, v1.2d, v2.2s}, [sp]
// CHECK-ERROR: error: expected vector type register
// CHECK-ERROR: ld1r {x1}, [x0]
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid space between two vectors
// CHECK-ERROR: ld2r {v31.4s, v0.2s}, [sp]
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld3r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0]
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid space between two vectors
// CHECK-ERROR: ld4r {v31.2s, v0.2s, v1.2d, v2.2s}, [sp]
// CHECK-ERROR: ^
//------------------------------------------------------------------------------
// Load/Store single N-element structure to/from one lane of N consecutive
// registers (N = 1, 2,3,4)
//------------------------------------------------------------------------------
ld1 {v0.b}[16], [x0]
ld2 {v15.h, v16.h}[8], [x15]
ld3 {v31.s, v0.s, v1.s}[-1], [sp]
ld4 {v0.d, v1.d, v2.d, v3.d}[2], [x0]
// CHECK-ERROR:: error: lane number incompatible with layout
// CHECK-ERROR: ld1 {v0.b}[16], [x0]
// CHECK-ERROR: ^
// CHECK-ERROR: error: lane number incompatible with layout
// CHECK-ERROR: ld2 {v15.h, v16.h}[8], [x15]
// CHECK-ERROR: ^
// CHECK-ERROR: error: expected lane number
// CHECK-ERROR: ld3 {v31.s, v0.s, v1.s}[-1], [sp]
// CHECK-ERROR: ^
// CHECK-ERROR: error: lane number incompatible with layout
// CHECK-ERROR: ld4 {v0.d, v1.d, v2.d, v3.d}[2], [x0]
// CHECK-ERROR: ^
st1 {v0.d}[16], [x0]
st2 {v31.s, v0.s}[3], [8]
st3 {v15.h, v16.h, v17.h}[-1], [x15]
st4 {v0.d, v1.d, v2.d, v3.d}[2], [x0]
// CHECK-ERROR:: error: lane number incompatible with layout
// CHECK-ERROR: st1 {v0.d}[16], [x0]
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: st2 {v31.s, v0.s}[3], [8]
// CHECK-ERROR: ^
// CHECK-ERROR: error: expected lane number
// CHECK-ERROR: st3 {v15.h, v16.h, v17.h}[-1], [x15]
// CHECK-ERROR: ^
// CHECK-ERROR: lane number incompatible with layout
// CHECK-ERROR: st4 {v0.d, v1.d, v2.d, v3.d}[2], [x0]
// CHECK-ERROR: ^
//------------------------------------------------------------------------------
// Post-index of load single N-element structure to all lanes of N consecutive
// registers (N = 1,2,3,4)
//------------------------------------------------------------------------------
ld1r {v15.8h}, [x15], #5
ld2r {v0.2d, v1.2d}, [x0], #7
ld3r {v15.4h, v16.4h, v17.4h}, [x15], #1
ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp], sp
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld1r {v15.8h}, [x15], #5
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld2r {v0.2d, v1.2d}, [x0], #7
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld3r {v15.4h, v16.4h, v17.4h}, [x15], #1
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp], sp
// CHECK-ERROR: ^
//------------------------------------------------------------------------------
// Post-index of Load/Store single N-element structure to/from one lane of N
// consecutive registers (N = 1, 2,3,4)
//------------------------------------------------------------------------------
ld1 {v0.b}[0], [x0], #2
ld2 {v15.h, v16.h}[0], [x15], #3
ld3 {v31.s, v0.s, v1.d}[0], [sp], x9
ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #24
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld1 {v0.b}[0], [x0], #2
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld2 {v15.h, v16.h}[0], [x15], #3
// CHECK-ERROR: ^
// CHECK-ERROR: error: expected the same vector layout
// CHECK-ERROR: ld3 {v31.s, v0.s, v1.d}[0], [sp], x9
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #24
// CHECK-ERROR: ^
st1 {v0.d}[0], [x0], #7
st2 {v31.s, v0.s}[0], [sp], #6
st3 {v15.h, v16.h, v17.h}[0], [x15], #8
st4 {v0.b, v1.b, v2.b, v3.b}[1], [x0], #1
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: st1 {v0.d}[0], [x0], #7
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: st2 {v31.s, v0.s}[0], [sp], #6
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: st3 {v15.h, v16.h, v17.h}[0], [x15], #8
// CHECK-ERROR: ^
// CHECK-ERROR: error: invalid operand for instruction
// CHECK-ERROR: st4 {v0.b, v1.b, v2.b, v3.b}[1], [x0], #1
// CHECK-ERROR: ^
ins v2.b[16], w1
ins v7.h[8], w14
ins v20.s[5], w30

View File

@ -0,0 +1,325 @@
// RUN: llvm-mc -triple=aarch64 -mattr=+neon -show-encoding < %s | FileCheck %s
// Check that the assembler can handle the documented syntax for AArch64
//------------------------------------------------------------------------------
// Load single 1-element structure to all lanes of 1 register
//------------------------------------------------------------------------------
ld1r {v0.16b}, [x0]
ld1r {v15.8h}, [x15]
ld1r {v31.4s}, [sp]
ld1r {v0.2d}, [x0]
ld1r {v0.8b}, [x0]
ld1r {v15.4h}, [x15]
ld1r {v31.2s}, [sp]
ld1r {v0.1d}, [x0]
// CHECK: ld1r {v0.16b}, [x0] // encoding: [0x00,0xc0,0x40,0x4d]
// CHECK: ld1r {v15.8h}, [x15] // encoding: [0xef,0xc5,0x40,0x4d]
// CHECK: ld1r {v31.4s}, [sp] // encoding: [0xff,0xcb,0x40,0x4d]
// CHECK: ld1r {v0.2d}, [x0] // encoding: [0x00,0xcc,0x40,0x4d]
// CHECK: ld1r {v0.8b}, [x0] // encoding: [0x00,0xc0,0x40,0x0d]
// CHECK: ld1r {v15.4h}, [x15] // encoding: [0xef,0xc5,0x40,0x0d]
// CHECK: ld1r {v31.2s}, [sp] // encoding: [0xff,0xcb,0x40,0x0d]
// CHECK: ld1r {v0.1d}, [x0] // encoding: [0x00,0xcc,0x40,0x0d]
//------------------------------------------------------------------------------
// Load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
//------------------------------------------------------------------------------
ld2r {v0.16b, v1.16b}, [x0]
ld2r {v15.8h, v16.8h}, [x15]
ld2r {v31.4s, v0.4s}, [sp]
ld2r {v0.2d, v1.2d}, [x0]
ld2r {v0.8b, v1.8b}, [x0]
ld2r {v15.4h, v16.4h}, [x15]
ld2r {v31.2s, v0.2s}, [sp]
ld2r {v31.1d, v0.1d}, [sp]
// CHECK: ld2r {v0.16b, v1.16b}, [x0] // encoding: [0x00,0xc0,0x60,0x4d]
// CHECK: ld2r {v15.8h, v16.8h}, [x15] // encoding: [0xef,0xc5,0x60,0x4d]
// CHECK: ld2r {v31.4s, v0.4s}, [sp] // encoding: [0xff,0xcb,0x60,0x4d]
// CHECK: ld2r {v0.2d, v1.2d}, [x0] // encoding: [0x00,0xcc,0x60,0x4d]
// CHECK: ld2r {v0.8b, v1.8b}, [x0] // encoding: [0x00,0xc0,0x60,0x0d]
// CHECK: ld2r {v15.4h, v16.4h}, [x15] // encoding: [0xef,0xc5,0x60,0x0d]
// CHECK: ld2r {v31.2s, v0.2s}, [sp] // encoding: [0xff,0xcb,0x60,0x0d]
// CHECK: ld2r {v31.1d, v0.1d}, [sp] // encoding: [0xff,0xcf,0x60,0x0d]
ld3r {v0.16b, v1.16b, v2.16b}, [x0]
ld3r {v15.8h, v16.8h, v17.8h}, [x15]
ld3r {v31.4s, v0.4s, v1.4s}, [sp]
ld3r {v0.2d, v1.2d, v2.2d}, [x0]
ld3r {v0.8b, v1.8b, v2.8b}, [x0]
ld3r {v15.4h, v16.4h, v17.4h}, [x15]
ld3r {v31.2s, v0.2s, v1.2s}, [sp]
ld3r {v31.1d, v0.1d, v1.1d}, [sp]
// CHECK: ld3r {v0.16b, v1.16b, v2.16b}, [x0] // encoding: [0x00,0xe0,0x40,0x4d]
// CHECK: ld3r {v15.8h, v16.8h, v17.8h}, [x15] // encoding: [0xef,0xe5,0x40,0x4d]
// CHECK: ld3r {v31.4s, v0.4s, v1.4s}, [sp] // encoding: [0xff,0xeb,0x40,0x4d]
// CHECK: ld3r {v0.2d, v1.2d, v2.2d}, [x0] // encoding: [0x00,0xec,0x40,0x4d]
// CHECK: ld3r {v0.8b, v1.8b, v2.8b}, [x0] // encoding: [0x00,0xe0,0x40,0x0d]
// CHECK: ld3r {v15.4h, v16.4h, v17.4h}, [x15] // encoding: [0xef,0xe5,0x40,0x0d]
// CHECK: ld3r {v31.2s, v0.2s, v1.2s}, [sp] // encoding: [0xff,0xeb,0x40,0x0d]
// CHECK: ld3r {v31.1d, v0.1d, v1.1d}, [sp] // encoding: [0xff,0xef,0x40,0x0d]
ld4r {v0.16b, v1.16b, v2.16b, v3.16b}, [x0]
ld4r {v15.8h, v16.8h, v17.8h, v18.8h}, [x15]
ld4r {v31.4s, v0.4s, v1.4s, v2.4s}, [sp]
ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [x0]
ld4r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0]
ld4r {v15.4h, v16.4h, v17.4h, v18.4h}, [x15]
ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp]
ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp]
// CHECK: ld4r {v0.16b, v1.16b, v2.16b, v3.16b}, [x0] // encoding: [0x00,0xe0,0x60,0x4d]
// CHECK: ld4r {v15.8h, v16.8h, v17.8h, v18.8h}, [x15] // encoding: [0xef,0xe5,0x60,0x4d]
// CHECK: ld4r {v31.4s, v0.4s, v1.4s, v2.4s}, [sp] // encoding: [0xff,0xeb,0x60,0x4d]
// CHECK: ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [x0] // encoding: [0x00,0xec,0x60,0x4d]
// CHECK: ld4r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0] // encoding: [0x00,0xe0,0x60,0x0d]
// CHECK: ld4r {v15.4h, v16.4h, v17.4h, v18.4h}, [x15] // encoding: [0xef,0xe5,0x60,0x0d]
// CHECK: ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp] // encoding: [0xff,0xeb,0x60,0x0d]
// CHECK: ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp] // encoding: [0xff,0xef,0x60,0x0d]
//------------------------------------------------------------------------------
// Load single 1-element structure to one lane of 1 register.
//------------------------------------------------------------------------------
ld1 {v0.b}[9], [x0]
ld1 {v15.h}[7], [x15]
ld1 {v31.s}[3], [sp]
ld1 {v0.d}[1], [x0]
// CHECK: ld1 {v0.b}[9], [x0] // encoding: [0x00,0x04,0x40,0x4d]
// CHECK: ld1 {v15.h}[7], [x15] // encoding: [0xef,0x59,0x40,0x4d]
// CHECK: ld1 {v31.s}[3], [sp] // encoding: [0xff,0x93,0x40,0x4d]
// CHECK: ld1 {v0.d}[1], [x0] // encoding: [0x00,0x84,0x40,0x4d]
//------------------------------------------------------------------------------
// Load single N-element structure to one lane of N consecutive registers
// (N = 2,3,4)
//------------------------------------------------------------------------------
ld2 {v0.b, v1.b}[9], [x0]
ld2 {v15.h, v16.h}[7], [x15]
ld2 {v31.s, v0.s}[3], [sp]
ld2 {v0.d, v1.d}[1], [x0]
// CHECK: ld2 {v0.b, v1.b}[9], [x0] // encoding: [0x00,0x04,0x60,0x4d]
// CHECK: ld2 {v15.h, v16.h}[7], [x15] // encoding: [0xef,0x59,0x60,0x4d]
// CHECK: ld2 {v31.s, v0.s}[3], [sp] // encoding: [0xff,0x93,0x60,0x4d]
// CHECK: ld2 {v0.d, v1.d}[1], [x0] // encoding: [0x00,0x84,0x60,0x4d]
ld3 {v0.b, v1.b, v2.b}[9], [x0]
ld3 {v15.h, v16.h, v17.h}[7], [x15]
ld3 {v31.s, v0.s, v1.s}[3], [sp]
ld3 {v0.d, v1.d, v2.d}[1], [x0]
// CHECK: ld3 {v0.b, v1.b, v2.b}[9], [x0] // encoding: [0x00,0x24,0x40,0x4d]
// CHECK: ld3 {v15.h, v16.h, v17.h}[7], [x15] // encoding: [0xef,0x79,0x40,0x4d]
// CHECK: ld3 {v31.s, v0.s, v1.s}[3], [sp] // encoding: [0xff,0xb3,0x40,0x4d]
// CHECK: ld3 {v0.d, v1.d, v2.d}[1], [x0] // encoding: [0x00,0xa4,0x40,0x4d]
ld4 {v0.b, v1.b, v2.b, v3.b}[9], [x0]
ld4 {v15.h, v16.h, v17.h, v18.h}[7], [x15]
ld4 {v31.s, v0.s, v1.s, v2.s}[3], [sp]
ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0]
// CHECK: ld4 {v0.b, v1.b, v2.b, v3.b}[9], [x0] // encoding: [0x00,0x24,0x60,0x4d]
// CHECK: ld4 {v15.h, v16.h, v17.h, v18.h}[7], [x15] // encoding: [0xef,0x79,0x60,0x4d]
// CHECK: ld4 {v31.s, v0.s, v1.s, v2.s}[3], [sp] // encoding: [0xff,0xb3,0x60,0x4d]
// CHECK: ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0] // encoding: [0x00,0xa4,0x60,0x4d]
//------------------------------------------------------------------------------
// Store single 1-element structure from one lane of 1 register.
//------------------------------------------------------------------------------
st1 {v0.b}[9], [x0]
st1 {v15.h}[7], [x15]
st1 {v31.s}[3], [sp]
st1 {v0.d}[1], [x0]
// CHECK: st1 {v0.b}[9], [x0] // encoding: [0x00,0x04,0x00,0x4d]
// CHECK: st1 {v15.h}[7], [x15] // encoding: [0xef,0x59,0x00,0x4d]
// CHECK: st1 {v31.s}[3], [sp] // encoding: [0xff,0x93,0x00,0x4d]
// CHECK: st1 {v0.d}[1], [x0] // encoding: [0x00,0x84,0x00,0x4d]
//------------------------------------------------------------------------------
// Store single N-element structure from one lane of N consecutive registers
// (N = 2,3,4)
//------------------------------------------------------------------------------
st2 {v0.b, v1.b}[9], [x0]
st2 {v15.h, v16.h}[7], [x15]
st2 {v31.s, v0.s}[3], [sp]
st2 {v0.d, v1.d}[1], [x0]
// CHECK: st2 {v0.b, v1.b}[9], [x0] // encoding: [0x00,0x04,0x20,0x4d]
// CHECK: st2 {v15.h, v16.h}[7], [x15] // encoding: [0xef,0x59,0x20,0x4d]
// CHECK: st2 {v31.s, v0.s}[3], [sp] // encoding: [0xff,0x93,0x20,0x4d]
// CHECK: st2 {v0.d, v1.d}[1], [x0] // encoding: [0x00,0x84,0x20,0x4d]
st3 {v0.b, v1.b, v2.b}[9], [x0]
st3 {v15.h, v16.h, v17.h}[7], [x15]
st3 {v31.s, v0.s, v1.s}[3], [sp]
st3 {v0.d, v1.d, v2.d}[1], [x0]
// CHECK: st3 {v0.b, v1.b, v2.b}[9], [x0] // encoding: [0x00,0x24,0x00,0x4d]
// CHECK: st3 {v15.h, v16.h, v17.h}[7], [x15] // encoding: [0xef,0x79,0x00,0x4d]
// CHECK: st3 {v31.s, v0.s, v1.s}[3], [sp] // encoding: [0xff,0xb3,0x00,0x4d]
// CHECK: st3 {v0.d, v1.d, v2.d}[1], [x0] // encoding: [0x00,0xa4,0x00,0x4d]
st4 {v0.b, v1.b, v2.b, v3.b}[9], [x0]
st4 {v15.h, v16.h, v17.h, v18.h}[7], [x15]
st4 {v31.s, v0.s, v1.s, v2.s}[3], [sp]
st4 {v0.d, v1.d, v2.d, v3.d}[1], [x0]
// CHECK: st4 {v0.b, v1.b, v2.b, v3.b}[9], [x0] // encoding: [0x00,0x24,0x20,0x4d]
// CHECK: st4 {v15.h, v16.h, v17.h, v18.h}[7], [x15] // encoding: [0xef,0x79,0x20,0x4d]
// CHECK: st4 {v31.s, v0.s, v1.s, v2.s}[3], [sp] // encoding: [0xff,0xb3,0x20,0x4d]
// CHECK: st4 {v0.d, v1.d, v2.d, v3.d}[1], [x0] // encoding: [0x00,0xa4,0x20,0x4d]
//------------------------------------------------------------------------------
// Post-index oad single 1-element structure to all lanes of 1 register
//------------------------------------------------------------------------------
ld1r {v0.16b}, [x0], #1
ld1r {v15.8h}, [x15], #2
ld1r {v31.4s}, [sp], #4
ld1r {v0.2d}, [x0], #8
ld1r {v0.8b}, [x0], x0
ld1r {v15.4h}, [x15], x1
ld1r {v31.2s}, [sp], x2
ld1r {v0.1d}, [x0], x3
// CHECK: ld1r {v0.16b}, [x0], #1 // encoding: [0x00,0xc0,0xdf,0x4d]
// CHECK: ld1r {v15.8h}, [x15], #2 // encoding: [0xef,0xc5,0xdf,0x4d]
// CHECK: ld1r {v31.4s}, [sp], #4 // encoding: [0xff,0xcb,0xdf,0x4d]
// CHECK: ld1r {v0.2d}, [x0], #8 // encoding: [0x00,0xcc,0xdf,0x4d]
// CHECK: ld1r {v0.8b}, [x0], x0 // encoding: [0x00,0xc0,0xc0,0x0d]
// CHECK: ld1r {v15.4h}, [x15], x1 // encoding: [0xef,0xc5,0xc1,0x0d]
// CHECK: ld1r {v31.2s}, [sp], x2 // encoding: [0xff,0xcb,0xc2,0x0d]
// CHECK: ld1r {v0.1d}, [x0], x3 // encoding: [0x00,0xcc,0xc3,0x0d]
//------------------------------------------------------------------------------
// Post-index load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
//------------------------------------------------------------------------------
ld2r {v0.16b, v1.16b}, [x0], #2
ld2r {v15.8h, v16.8h}, [x15], #4
ld2r {v31.4s, v0.4s}, [sp], #8
ld2r {v0.2d, v1.2d}, [x0], #16
ld2r {v0.8b, v1.8b}, [x0], x6
ld2r {v15.4h, v16.4h}, [x15], x7
ld2r {v31.2s, v0.2s}, [sp], x9
ld2r {v31.1d, v0.1d}, [x0], x5
// CHECK: ld2r {v0.16b, v1.16b}, [x0], #2 // encoding: [0x00,0xc0,0xff,0x4d]
// CHECK: ld2r {v15.8h, v16.8h}, [x15], #4 // encoding: [0xef,0xc5,0xff,0x4d]
// CHECK: ld2r {v31.4s, v0.4s}, [sp], #8 // encoding: [0xff,0xcb,0xff,0x4d]
// CHECK: ld2r {v0.2d, v1.2d}, [x0], #16 // encoding: [0x00,0xcc,0xff,0x4d]
// CHECK: ld2r {v0.8b, v1.8b}, [x0], x6 // encoding: [0x00,0xc0,0xe6,0x0d]
// CHECK: ld2r {v15.4h, v16.4h}, [x15], x7 // encoding: [0xef,0xc5,0xe7,0x0d]
// CHECK: ld2r {v31.2s, v0.2s}, [sp], x9 // encoding: [0xff,0xcb,0xe9,0x0d]
// CHECK: ld2r {v31.1d, v0.1d}, [x0], x5 // encoding: [0x1f,0xcc,0xe5,0x0d]
ld3r {v0.16b, v1.16b, v2.16b}, [x0], x9
ld3r {v15.8h, v16.8h, v17.8h}, [x15], x6
ld3r {v31.4s, v0.4s, v1.4s}, [sp], x7
ld3r {v0.2d, v1.2d, v2.2d}, [x0], x5
ld3r {v0.8b, v1.8b, v2.8b}, [x0], #3
ld3r {v15.4h, v16.4h, v17.4h}, [x15], #6
ld3r {v31.2s, v0.2s, v1.2s}, [sp], #12
ld3r {v31.1d, v0.1d, v1.1d}, [sp], #24
// CHECK: ld3r {v0.16b, v1.16b, v2.16b}, [x0], x9 // encoding: [0x00,0xe0,0xc9,0x4d]
// CHECK: ld3r {v15.8h, v16.8h, v17.8h}, [x15], x6 // encoding: [0xef,0xe5,0xc6,0x4d]
// CHECK: ld3r {v31.4s, v0.4s, v1.4s}, [sp], x7 // encoding: [0xff,0xeb,0xc7,0x4d]
// CHECK: ld3r {v0.2d, v1.2d, v2.2d}, [x0], x5 // encoding: [0x00,0xec,0xc5,0x4d]
// CHECK: ld3r {v0.8b, v1.8b, v2.8b}, [x0], #3 // encoding: [0x00,0xe0,0xdf,0x0d]
// CHECK: ld3r {v15.4h, v16.4h, v17.4h}, [x15], #6 // encoding: [0xef,0xe5,0xdf,0x0d]
// CHECK: ld3r {v31.2s, v0.2s, v1.2s}, [sp], #12 // encoding: [0xff,0xeb,0xdf,0x0d]
// CHECK: ld3r {v31.1d, v0.1d, v1.1d}, [sp], #24 // encoding: [0xff,0xef,0xdf,0x0d]
ld4r {v0.16b, v1.16b, v2.16b, v3.16b}, [x0], #4
ld4r {v15.8h, v16.8h, v17.8h, v18.8h}, [x15], #8
ld4r {v31.4s, v0.4s, v1.4s, v2.4s}, [sp], #16
ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [x0], #32
ld4r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0], x5
ld4r {v15.4h, v16.4h, v17.4h, v18.4h}, [x15], x9
ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp], x30
ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp], x7
// CHECK: ld4r {v0.16b, v1.16b, v2.16b, v3.16b}, [x0], #4 // encoding: [0x00,0xe0,0xff,0x4d]
// CHECK: ld4r {v15.8h, v16.8h, v17.8h, v18.8h}, [x15], #8 // encoding: [0xef,0xe5,0xff,0x4d]
// CHECK: ld4r {v31.4s, v0.4s, v1.4s, v2.4s}, [sp], #16 // encoding: [0xff,0xeb,0xff,0x4d]
// CHECK: ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [x0], #32 // encoding: [0x00,0xec,0xff,0x4d]
// CHECK: ld4r {v0.8b, v1.8b, v2.8b, v3.8b}, [x0], x5 // encoding: [0x00,0xe0,0xe5,0x0d]
// CHECK: ld4r {v15.4h, v16.4h, v17.4h, v18.4h}, [x15], x9 // encoding: [0xef,0xe5,0xe9,0x0d]
// CHECK: ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp], x30 // encoding: [0xff,0xeb,0xfe,0x0d]
// CHECK: ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp], x7 // encoding: [0xff,0xef,0xe7,0x0d]
//------------------------------------------------------------------------------
// Post-index load single 1-element structure to one lane of 1 register.
//------------------------------------------------------------------------------
ld1 {v0.b}[9], [x0], #1
ld1 {v15.h}[7], [x15], x9
ld1 {v31.s}[3], [sp], x6
ld1 {v0.d}[1], [x0], #8
// CHECK: ld1 {v0.b}[9], [x0], #1 // encoding: [0x00,0x04,0xdf,0x4d]
// CHECK: ld1 {v15.h}[7], [x15], x9 // encoding: [0xef,0x59,0xc9,0x4d]
// CHECK: ld1 {v31.s}[3], [sp], x6 // encoding: [0xff,0x93,0xc6,0x4d]
// CHECK: ld1 {v0.d}[1], [x0], #8 // encoding: [0x00,0x84,0xdf,0x4d]
//------------------------------------------------------------------------------
// Post-index load single N-element structure to one lane of N consecutive
// registers (N = 2,3,4)
//------------------------------------------------------------------------------
ld2 {v0.b, v1.b}[9], [x0], x3
ld2 {v15.h, v16.h}[7], [x15], #4
ld2 {v31.s, v0.s}[3], [sp], #8
ld2 {v0.d, v1.d}[1], [x0], x0
// CHECK: ld2 {v0.b, v1.b}[9], [x0], x3 // encoding: [0x00,0x04,0xe3,0x4d]
// CHECK: ld2 {v15.h, v16.h}[7], [x15], #4 // encoding: [0xef,0x59,0xff,0x4d]
// CHECK: ld2 {v31.s, v0.s}[3], [sp], #8 // encoding: [0xff,0x93,0xff,0x4d]
// CHECK: ld2 {v0.d, v1.d}[1], [x0], x0 // encoding: [0x00,0x84,0xe0,0x4d]
ld3 {v0.b, v1.b, v2.b}[9], [x0], #3
ld3 {v15.h, v16.h, v17.h}[7], [x15], #6
ld3 {v31.s, v0.s, v1.s}[3], [sp], x3
ld3 {v0.d, v1.d, v2.d}[1], [x0], x6
// CHECK: ld3 {v0.b, v1.b, v2.b}[9], [x0], #3 // encoding: [0x00,0x24,0xdf,0x4d]
// CHECK: ld3 {v15.h, v16.h, v17.h}[7], [x15], #6 // encoding: [0xef,0x79,0xdf,0x4d]
// CHECK: ld3 {v31.s, v0.s, v1.s}[3], [sp], x3 // encoding: [0xff,0xb3,0xc3,0x4d]
// CHECK: ld3 {v0.d, v1.d, v2.d}[1], [x0], x6 // encoding: [0x00,0xa4,0xc6,0x4d]
ld4 {v0.b, v1.b, v2.b, v3.b}[9], [x0], x5
ld4 {v15.h, v16.h, v17.h, v18.h}[7], [x15], x7
ld4 {v31.s, v0.s, v1.s, v2.s}[3], [sp], #16
ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #32
// CHECK: ld4 {v0.b, v1.b, v2.b, v3.b}[9], [x0], x5 // encoding: [0x00,0x24,0xe5,0x4d]
// CHECK: ld4 {v15.h, v16.h, v17.h, v18.h}[7], [x15], x7 // encoding: [0xef,0x79,0xe7,0x4d]
// CHECK: ld4 {v31.s, v0.s, v1.s, v2.s}[3], [sp], #16 // encoding: [0xff,0xb3,0xff,0x4d]
// CHECK: ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #32 // encoding: [0x00,0xa4,0xff,0x4d]
//------------------------------------------------------------------------------
// Post-index store single 1-element structure from one lane of 1 register.
//------------------------------------------------------------------------------
st1 {v0.b}[9], [x0], #1
st1 {v15.h}[7], [x15], x9
st1 {v31.s}[3], [sp], x6
st1 {v0.d}[1], [x0], #8
// CHECK: st1 {v0.b}[9], [x0], #1 // encoding: [0x00,0x04,0x9f,0x4d]
// CHECK: st1 {v15.h}[7], [x15], x9 // encoding: [0xef,0x59,0x89,0x4d]
// CHECK: st1 {v31.s}[3], [sp], x6 // encoding: [0xff,0x93,0x86,0x4d]
// CHECK: st1 {v0.d}[1], [x0], #8 // encoding: [0x00,0x84,0x9f,0x4d]
//------------------------------------------------------------------------------
// Post-index store single N-element structure from one lane of N consecutive
// registers (N = 2,3,4)
//------------------------------------------------------------------------------
st2 {v0.b, v1.b}[9], [x0], x3
st2 {v15.h, v16.h}[7], [x15], #4
st2 {v31.s, v0.s}[3], [sp], #8
st2 {v0.d, v1.d}[1], [x0], x0
// CHECK: st2 {v0.b, v1.b}[9], [x0], x3 // encoding: [0x00,0x04,0xa3,0x4d]
// CHECK: st2 {v15.h, v16.h}[7], [x15], #4 // encoding: [0xef,0x59,0xbf,0x4d]
// CHECK: st2 {v31.s, v0.s}[3], [sp], #8 // encoding: [0xff,0x93,0xbf,0x4d]
// CHECK: st2 {v0.d, v1.d}[1], [x0], x0 // encoding: [0x00,0x84,0xa0,0x4d]
st3 {v0.b, v1.b, v2.b}[9], [x0], #3
st3 {v15.h, v16.h, v17.h}[7], [x15], #6
st3 {v31.s, v0.s, v1.s}[3], [sp], x3
st3 {v0.d, v1.d, v2.d}[1], [x0], x6
// CHECK: st3 {v0.b, v1.b, v2.b}[9], [x0], #3 // encoding: [0x00,0x24,0x9f,0x4d]
// CHECK: st3 {v15.h, v16.h, v17.h}[7], [x15], #6 // encoding: [0xef,0x79,0x9f,0x4d]
// CHECK: st3 {v31.s, v0.s, v1.s}[3], [sp], x3 // encoding: [0xff,0xb3,0x83,0x4d]
// CHECK: st3 {v0.d, v1.d, v2.d}[1], [x0], x6 // encoding: [0x00,0xa4,0x86,0x4d]
st4 {v0.b, v1.b, v2.b, v3.b}[9], [x0], x5
st4 {v15.h, v16.h, v17.h, v18.h}[7], [x15], x7
st4 {v31.s, v0.s, v1.s, v2.s}[3], [sp], #16
st4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #32
// CHECK: st4 {v0.b, v1.b, v2.b, v3.b}[9], [x0], x5 // encoding: [0x00,0x24,0xa5,0x4d]
// CHECK: st4 {v15.h, v16.h, v17.h, v18.h}[7], [x15], x7 // encoding: [0xef,0x79,0xa7,0x4d]
// CHECK: st4 {v31.s, v0.s, v1.s, v2.s}[3], [sp], #16 // encoding: [0xff,0xb3,0xbf,0x4d]
// CHECK: st4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #32 // encoding: [0x00,0xa4,0xbf,0x4d]

View File

@ -2059,6 +2059,90 @@
0xef,0x45,0x82,0x4c
0xff,0x0b,0x9f,0x4c
#----------------------------------------------------------------------
# Vector load single N-element structure to all lane of N
# consecutive registers (N = 1,2,3,4)
#----------------------------------------------------------------------
# CHECK: ld1r {v0.16b}, [x0]
# CHECK: ld1r {v15.8h}, [x15]
# CHECK: ld2r {v31.4s, v0.4s}, [sp]
# CHECK: ld2r {v0.2d, v1.2d}, [x0]
# CHECK: ld3r {v0.8b, v1.8b, v2.8b}, [x0]
# CHECK: ld3r {v15.4h, v16.4h, v17.4h}, [x15]
# CHECK: ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp]
# CHECK: ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp]
0x00,0xc0,0x40,0x4d
0xef,0xc5,0x40,0x4d
0xff,0xcb,0x60,0x4d
0x00,0xcc,0x60,0x4d
0x00,0xe0,0x40,0x0d
0xef,0xe5,0x40,0x0d
0xff,0xeb,0x60,0x0d
0xff,0xef,0x60,0x0d
#----------------------------------------------------------------------
# Vector load/store single N-element structure to/from one lane of N
# consecutive registers (N = 1,2,3,4)
#----------------------------------------------------------------------
# CHECK: ld1 {v0.b}[9], [x0]
# CHECK: ld2 {v15.h, v16.h}[7], [x15]
# CHECK: ld3 {v31.s, v0.s, v1.s}[3], [sp]
# CHECK: ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0]
# CHECK: st1 {v0.d}[1], [x0]
# CHECK: st2 {v31.s, v0.s}[3], [sp]
# CHECK: st3 {v15.h, v16.h, v17.h}[7], [x15]
# CHECK: st4 {v0.b, v1.b, v2.b, v3.b}[9], [x0]
0x00,0x04,0x40,0x4d
0xef,0x59,0x60,0x4d
0xff,0xb3,0x40,0x4d
0x00,0xa4,0x60,0x4d
0x00,0x84,0x00,0x4d
0xff,0x93,0x20,0x4d
0xef,0x79,0x00,0x4d
0x00,0x24,0x20,0x4d
#----------------------------------------------------------------------
# Post-index of vector load single N-element structure to all lane of N
# consecutive registers (N = 1,2,3,4)
#----------------------------------------------------------------------
# CHECK: ld1r {v0.16b}, [x0], #1
# CHECK: ld1r {v15.8h}, [x15], #2
# CHECK: ld2r {v31.4s, v0.4s}, [sp], #8
# CHECK: ld2r {v0.2d, v1.2d}, [x0], #16
# CHECK: ld3r {v0.8b, v1.8b, v2.8b}, [x0], #3
# CHECK: ld3r {v15.4h, v16.4h, v17.4h}, [x15], #6
# CHECK: ld4r {v31.2s, v0.2s, v1.2s, v2.2s}, [sp], x30
# CHECK: ld4r {v31.1d, v0.1d, v1.1d, v2.1d}, [sp], x7
0x00,0xc0,0xdf,0x4d
0xef,0xc5,0xdf,0x4d
0xff,0xcb,0xff,0x4d
0x00,0xcc,0xff,0x4d
0x00,0xe0,0xdf,0x0d
0xef,0xe5,0xdf,0x0d
0xff,0xeb,0xfe,0x0d
0xff,0xef,0xe7,0x0d
#----------------------------------------------------------------------
# Post-index of vector load/store single N-element structure to/from
# one lane of N consecutive registers (N = 1,2,3,4)
#----------------------------------------------------------------------
# CHECK: ld1 {v0.b}[0], [x0], #1
# CHECK: ld2 {v15.h, v16.h}[0], [x15], #4
# CHECK: ld3 {v31.s, v0.s, v1.s}[0], [sp], x3
# CHECK: ld4 {v0.d, v1.d, v2.d, v3.d}[1], [x0], #24
# CHECK: st1 {v0.d}[0], [x0], #8
# CHECK: st2 {v31.s, v0.s}[0], [sp], #8
# CHECK: st3 {v15.h, v16.h, v17.h}[0], [x15], #6
# CHECK: st4 {v0.b, v1.b, v2.b, v3.b}[1], [x0], x5
0x00,0x04,0xdf,0x4d
0xef,0x59,0xff,0x4d
0xff,0xb3,0xc3,0x4d
0x00,0xa4,0xff,0x4d
0x00,0x84,0x9f,0x4d
0xff,0x93,0xbf,0x4d
0xef,0x79,0x9f,0x4d
0x00,0x24,0xa5,0x4d
#----------------------------------------------------------------------
# Bitwise extract
#----------------------------------------------------------------------