Remove backwards compatibility goop. This is now handled by llvm-upgrade.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32146 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2006-12-03 05:47:10 +00:00
parent a132e04b66
commit 3795ad164a
2 changed files with 16 additions and 632 deletions

View File

@ -17,7 +17,6 @@
//===----------------------------------------------------------------------===//
#include "Reader.h"
#include "llvm/Assembly/AutoUpgrade.h"
#include "llvm/Bytecode/BytecodeHandler.h"
#include "llvm/BasicBlock.h"
#include "llvm/CallingConv.h"
@ -215,9 +214,9 @@ const Type *BytecodeReader::getType(unsigned ID) {
return Type::VoidTy;
}
/// This method just saves some coding. It uses read_vbr_uint to read
/// in a sanitized type id, errors that its not the type type, and
/// then calls getType to return the type value.
/// This method just saves some coding. It uses read_vbr_uint to read in a
/// type id, errors that its not the type type, and then calls getType to
/// return the type value.
inline const Type* BytecodeReader::readType() {
return getType(read_vbr_uint());
}
@ -461,358 +460,6 @@ void BytecodeReader::insertArguments(Function* F) {
insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
}
/// Convert previous opcode values into the current value and/or construct
/// the instruction. This function handles all *abnormal* cases for instruction
/// generation based on obsolete opcode values. The normal cases are handled
/// in ParseInstruction below. Generally this function just produces a new
/// Opcode value (first argument). In a few cases (VAArg, VANext) the upgrade
/// path requies that the instruction (sequence) be generated differently from
/// the normal case in order to preserve the original semantics. In these
/// cases the result of the function will be a non-zero Instruction pointer. In
/// all other cases, zero will be returned indicating that the *normal*
/// instruction generation should be used, but with the new Opcode value.
Instruction*
BytecodeReader::upgradeInstrOpcodes(
unsigned &Opcode, ///< The old opcode, possibly updated by this function
std::vector<unsigned> &Oprnds, ///< The operands to the instruction
unsigned &iType, ///< The type code from the bytecode file
const Type *InstTy, ///< The type of the instruction
BasicBlock *BB ///< The basic block to insert into, if we need to
) {
// First, short circuit this if no conversion is required. When signless
// instructions were implemented the entire opcode sequence was revised in
// two stages: first Div/Rem became signed, then Shr/Cast/Setcc became
// signed. If all of these instructions are signed then we don't have to
// upgrade the opcode.
if (!hasSignlessDivRem && !hasSignlessShrCastSetcc)
return 0; // The opcode is fine the way it is.
// If this is bytecode version 6, that only had signed Rem and Div
// instructions, then we must compensate for those two instructions only.
// So that the switch statement below works, we're trying to turn this into
// a version 5 opcode. To do that we must adjust the opcode to 10 (Div) if its
// any of the UDiv, SDiv or FDiv instructions; or, adjust the opcode to
// 11 (Rem) if its any of the URem, SRem, or FRem instructions; or, simply
// decrement the instruction code if its beyond FRem.
if (!hasSignlessDivRem) {
// If its one of the signed Div/Rem opcodes, its fine the way it is
if (Opcode >= 10 && Opcode <= 12) // UDiv through FDiv
Opcode = 10; // Div
else if (Opcode >=13 && Opcode <= 15) // URem through FRem
Opcode = 11; // Rem
else if (Opcode >= 16 && Opcode <= 35) // And through Shr
// Adjust for new instruction codes
Opcode -= 4;
else if (Opcode >= 36 && Opcode <= 42) // Everything after Select
// In vers 6 bytecode we eliminated the placeholders for the obsolete
// VAARG and VANEXT instructions. Consequently those two slots were
// filled starting with Select (36) which was 34. So now we only need
// to subtract two. This circumvents hitting opcodes 32 and 33
Opcode -= 2;
else { // Opcode < 10 or > 42
// No upgrade necessary.
return 0;
}
}
// Declare the resulting instruction we might build. In general we just
// change the Opcode argument but in a few cases we need to generate the
// Instruction here because the upgrade case is significantly different from
// the normal case.
Instruction *Result = 0;
// We're dealing with an upgrade situation. For each of the opcode values,
// perform the necessary conversion.
switch (Opcode) {
default: // Error
// This switch statement provides cases for all known opcodes prior to
// version 6 bytecode format. We know we're in an upgrade situation so
// if there isn't a match in this switch, then something is horribly
// wrong.
error("Unknown obsolete opcode encountered.");
break;
case 1: // Ret
Opcode = Instruction::Ret;
break;
case 2: // Br
Opcode = Instruction::Br;
break;
case 3: // Switch
Opcode = Instruction::Switch;
break;
case 4: // Invoke
Opcode = Instruction::Invoke;
break;
case 5: // Unwind
Opcode = Instruction::Unwind;
break;
case 6: // Unreachable
Opcode = Instruction::Unreachable;
break;
case 7: // Add
Opcode = Instruction::Add;
break;
case 8: // Sub
Opcode = Instruction::Sub;
break;
case 9: // Mul
Opcode = Instruction::Mul;
break;
case 10: // Div
// The type of the instruction is based on the operands. We need to select
// fdiv, udiv or sdiv based on that type. The iType values are hardcoded
// to the values used in bytecode version 5 (and prior) because it is
// likely these codes will change in future versions of LLVM.
if (iType == 10 || iType == 11 )
Opcode = Instruction::FDiv;
else if (iType >= 2 && iType <= 9 && iType % 2 != 0)
Opcode = Instruction::SDiv;
else
Opcode = Instruction::UDiv;
break;
case 11: // Rem
// As with "Div", make the signed/unsigned or floating point Rem
// instruction choice based on the type of the operands.
if (iType == 10 || iType == 11)
Opcode = Instruction::FRem;
else if (iType >= 2 && iType <= 9 && iType % 2 != 0)
Opcode = Instruction::SRem;
else
Opcode = Instruction::URem;
break;
case 12: // And
Opcode = Instruction::And;
break;
case 13: // Or
Opcode = Instruction::Or;
break;
case 14: // Xor
Opcode = Instruction::Xor;
break;
case 15: // SetEQ
Opcode = Instruction::SetEQ;
break;
case 16: // SetNE
Opcode = Instruction::SetNE;
break;
case 17: // SetLE
Opcode = Instruction::SetLE;
break;
case 18: // SetGE
Opcode = Instruction::SetGE;
break;
case 19: // SetLT
Opcode = Instruction::SetLT;
break;
case 20: // SetGT
Opcode = Instruction::SetGT;
break;
case 21: // Malloc
Opcode = Instruction::Malloc;
break;
case 22: // Free
Opcode = Instruction::Free;
break;
case 23: // Alloca
Opcode = Instruction::Alloca;
break;
case 24: // Load
Opcode = Instruction::Load;
break;
case 25: // Store
Opcode = Instruction::Store;
break;
case 26: // GetElementPtr
Opcode = Instruction::GetElementPtr;
break;
case 27: // PHI
Opcode = Instruction::PHI;
break;
case 28: // Cast
{
Value *Source = getValue(iType, Oprnds[0]);
const Type *DestTy = getType(Oprnds[1]);
// The previous definition of cast to bool was a compare against zero.
// We have to retain that semantic so we do it here.
if (DestTy == Type::BoolTy) { // if its a cast to bool
Opcode = Instruction::SetNE;
Result = new SetCondInst(Instruction::SetNE, Source,
Constant::getNullValue(Source->getType()));
} else if (Source->getType()->isFloatingPoint() &&
isa<PointerType>(DestTy)) {
// Upgrade what is now an illegal cast (fp -> ptr) into two casts,
// fp -> ui, and ui -> ptr
CastInst *CI = new FPToUIInst(Source, Type::ULongTy);
BB->getInstList().push_back(CI);
Result = new IntToPtrInst(CI, DestTy);
} else {
Result = CastInst::createInferredCast(Source, DestTy);
}
break;
}
case 29: // Call
Opcode = Instruction::Call;
break;
case 30: // Shl
Opcode = Instruction::Shl;
break;
case 31: // Shr
// The type of the instruction is based on the operands. We need to
// select ashr or lshr based on that type. The iType values are hardcoded
// to the values used in bytecode version 5 (and prior) because it is
// likely these codes will change in future versions of LLVM. This if
// statement says "if (integer type and signed)"
if (iType >= 2 && iType <= 9 && iType % 2 != 0)
Opcode = Instruction::AShr;
else
Opcode = Instruction::LShr;
break;
case 32: { //VANext_old ( <= llvm 1.5 )
const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
Function* NF = TheModule->getOrInsertFunction(
"llvm.va_copy", ArgTy, ArgTy, (Type *)0);
// In llvm 1.6 the VANext instruction was dropped because it was only
// necessary to have a VAArg instruction. The code below transforms an
// old vanext instruction into the equivalent code given only the
// availability of the new vaarg instruction. Essentially, the transform
// is as follows:
// b = vanext a, t ->
// foo = alloca 1 of t
// bar = vacopy a
// store bar -> foo
// tmp = vaarg foo, t
// b = load foo
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
BB->getInstList().push_back(foo);
CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
BB->getInstList().push_back(bar);
BB->getInstList().push_back(new StoreInst(bar, foo));
Instruction* tmp = new VAArgInst(foo, getType(Oprnds[1]));
BB->getInstList().push_back(tmp);
Result = new LoadInst(foo);
break;
}
case 33: { //VAArg_old
const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
Function* NF = TheModule->getOrInsertFunction(
"llvm.va_copy", ArgTy, ArgTy, (Type *)0);
// In llvm 1.6 the VAArg's instruction semantics were changed. The code
// below transforms an old vaarg instruction into the equivalent code
// given only the availability of the new vaarg instruction. Essentially,
// the transform is as follows:
// b = vaarg a, t ->
// foo = alloca 1 of t
// bar = vacopy a
// store bar -> foo
// b = vaarg foo, t
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
BB->getInstList().push_back(foo);
CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
BB->getInstList().push_back(bar);
BB->getInstList().push_back(new StoreInst(bar, foo));
Result = new VAArgInst(foo, getType(Oprnds[1]));
break;
}
case 34: // Select
Opcode = Instruction::Select;
break;
case 35: // UserOp1
Opcode = Instruction::UserOp1;
break;
case 36: // UserOp2
Opcode = Instruction::UserOp2;
break;
case 37: // VAArg
Opcode = Instruction::VAArg;
break;
case 38: // ExtractElement
Opcode = Instruction::ExtractElement;
break;
case 39: // InsertElement
Opcode = Instruction::InsertElement;
break;
case 40: // ShuffleVector
Opcode = Instruction::ShuffleVector;
break;
case 56: // Invoke with encoded CC
case 57: { // Invoke Fast CC
if (Oprnds.size() < 3)
error("Invalid invoke instruction!");
Value *F = getValue(iType, Oprnds[0]);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0)
error("Invoke to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0)
error("Invoke to non function pointer value!");
std::vector<Value *> Params;
BasicBlock *Normal, *Except;
unsigned CallingConv = CallingConv::C;
if (Opcode == 57)
CallingConv = CallingConv::Fast;
else if (Opcode == 56) {
CallingConv = Oprnds.back();
Oprnds.pop_back();
}
Opcode = Instruction::Invoke;
if (!FTy->isVarArg()) {
Normal = getBasicBlock(Oprnds[1]);
Except = getBasicBlock(Oprnds[2]);
FunctionType::param_iterator It = FTy->param_begin();
for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
if (It == FTy->param_end())
error("Invalid invoke instruction!");
Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
}
if (It != FTy->param_end())
error("Invalid invoke instruction!");
} else {
Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
Normal = getBasicBlock(Oprnds[0]);
Except = getBasicBlock(Oprnds[1]);
unsigned FirstVariableArgument = FTy->getNumParams()+2;
for (unsigned i = 2; i != FirstVariableArgument; ++i)
Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
Oprnds[i]));
// Must be type/value pairs. If not, error out.
if (Oprnds.size()-FirstVariableArgument & 1)
error("Invalid invoke instruction!");
for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
}
Result = new InvokeInst(F, Normal, Except, Params);
if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
break;
}
case 58: // Call with extra operand for calling conv
case 59: // tail call, Fast CC
case 60: // normal call, Fast CC
case 61: // tail call, C Calling Conv
case 62: // volatile load
case 63: // volatile store
// In all these cases, we pass the opcode through. The new version uses
// the same code (for now, this might change in 2.0). These are listed
// here to document the opcodes in use in vers 5 bytecode and to make it
// easier to migrate these opcodes in the future.
break;
}
return Result;
}
//===----------------------------------------------------------------------===//
// Bytecode Parsing Methods
//===----------------------------------------------------------------------===//
@ -895,23 +542,20 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
// Make the necessary adjustments for dealing with backwards compatibility
// of opcodes.
Instruction* Result =
upgradeInstrOpcodes(Opcode, Oprnds, iType, InstTy, BB);
Instruction* Result = 0;
// We have enough info to inform the handler now.
if (Handler)
Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
// If the backwards compatibility code didn't produce an instruction then
// we do the *normal* thing ..
if (!Result) {
// First, handle the easy binary operators case
if (Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
Result = BinaryOperator::create(Instruction::BinaryOps(Opcode),
getValue(iType, Oprnds[0]),
getValue(iType, Oprnds[1]));
// First, handle the easy binary operators case
if (Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
Result = BinaryOperator::create(Instruction::BinaryOps(Opcode),
getValue(iType, Oprnds[0]),
getValue(iType, Oprnds[1]));
if (!Result) {
// Indicate that we don't think this is a call instruction (yet).
// Process based on the Opcode read
switch (Opcode) {
@ -1307,7 +951,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Result = new UnreachableInst();
break;
} // end switch(Opcode)
} // end if *normal*
} // end if !Result
BB->getInstList().push_back(Result);
@ -1610,159 +1254,6 @@ void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
}
}
// Upgrade obsolete constant expression opcodes (ver. 5 and prior) to the new
// values used after ver 6. bytecode format. The operands are provided to the
// function so that decisions based on the operand type can be made when
// auto-upgrading obsolete opcodes to the new ones.
// NOTE: This code needs to be kept synchronized with upgradeInstrOpcodes.
// We can't use that function because of that functions argument requirements.
// This function only deals with the subset of opcodes that are applicable to
// constant expressions and is therefore simpler than upgradeInstrOpcodes.
inline Constant *BytecodeReader::upgradeCEOpcodes(
unsigned &Opcode, const std::vector<Constant*> &ArgVec, unsigned TypeID
) {
// Determine if no upgrade necessary
if (!hasSignlessDivRem && !hasSignlessShrCastSetcc)
return 0;
// If this is bytecode version 6, that only had signed Rem and Div
// instructions, then we must compensate for those two instructions only.
// So that the switch statement below works, we're trying to turn this into
// a version 5 opcode. To do that we must adjust the opcode to 10 (Div) if its
// any of the UDiv, SDiv or FDiv instructions; or, adjust the opcode to
// 11 (Rem) if its any of the URem, SRem, or FRem instructions; or, simply
// decrement the instruction code if its beyond FRem.
if (!hasSignlessDivRem) {
// If its one of the signed Div/Rem opcodes, its fine the way it is
if (Opcode >= 10 && Opcode <= 12) // UDiv through FDiv
Opcode = 10; // Div
else if (Opcode >=13 && Opcode <= 15) // URem through FRem
Opcode = 11; // Rem
else if (Opcode >= 16 && Opcode <= 35) // And through Shr
// Adjust for new instruction codes
Opcode -= 4;
else if (Opcode >= 36 && Opcode <= 42) // Everything after Select
// In vers 6 bytecode we eliminated the placeholders for the obsolete
// VAARG and VANEXT instructions. Consequently those two slots were
// filled starting with Select (36) which was 34. So now we only need
// to subtract two. This circumvents hitting opcodes 32 and 33
Opcode -= 2;
else { // Opcode < 10 or > 42
// No upgrade necessary.
return 0;
}
}
switch (Opcode) {
default: // Pass Through
// If we don't match any of the cases here then the opcode is fine the
// way it is.
break;
case 7: // Add
Opcode = Instruction::Add;
break;
case 8: // Sub
Opcode = Instruction::Sub;
break;
case 9: // Mul
Opcode = Instruction::Mul;
break;
case 10: // Div
// The type of the instruction is based on the operands. We need to select
// either udiv or sdiv based on that type. This expression selects the
// cases where the type is floating point or signed in which case we
// generated an sdiv instruction.
if (ArgVec[0]->getType()->isFloatingPoint())
Opcode = Instruction::FDiv;
else if (ArgVec[0]->getType()->isSigned())
Opcode = Instruction::SDiv;
else
Opcode = Instruction::UDiv;
break;
case 11: // Rem
// As with "Div", make the signed/unsigned or floating point Rem
// instruction choice based on the type of the operands.
if (ArgVec[0]->getType()->isFloatingPoint())
Opcode = Instruction::FRem;
else if (ArgVec[0]->getType()->isSigned())
Opcode = Instruction::SRem;
else
Opcode = Instruction::URem;
break;
case 12: // And
Opcode = Instruction::And;
break;
case 13: // Or
Opcode = Instruction::Or;
break;
case 14: // Xor
Opcode = Instruction::Xor;
break;
case 15: // SetEQ
Opcode = Instruction::SetEQ;
break;
case 16: // SetNE
Opcode = Instruction::SetNE;
break;
case 17: // SetLE
Opcode = Instruction::SetLE;
break;
case 18: // SetGE
Opcode = Instruction::SetGE;
break;
case 19: // SetLT
Opcode = Instruction::SetLT;
break;
case 20: // SetGT
Opcode = Instruction::SetGT;
break;
case 26: // GetElementPtr
Opcode = Instruction::GetElementPtr;
break;
case 28: { // Cast
const Type *Ty = getType(TypeID);
if (Ty == Type::BoolTy) {
// The previous definition of cast to bool was a compare against zero.
// We have to retain that semantic so we do it here.
Opcode = Instruction::SetEQ;
return ConstantExpr::get(Instruction::SetEQ, ArgVec[0],
Constant::getNullValue(ArgVec[0]->getType()));
} else if (ArgVec[0]->getType()->isFloatingPoint() &&
isa<PointerType>(Ty)) {
// Upgrade what is now an illegal cast (fp -> ptr) into two casts,
// fp -> ui, and ui -> ptr
Constant *CE = ConstantExpr::getFPToUI(ArgVec[0], Type::ULongTy);
return ConstantExpr::getIntToPtr(CE, Ty);
} else {
Opcode = CastInst::getCastOpcode(ArgVec[0], Ty);
}
break;
}
case 30: // Shl
Opcode = Instruction::Shl;
break;
case 31: // Shr
if (ArgVec[0]->getType()->isSigned())
Opcode = Instruction::AShr;
else
Opcode = Instruction::LShr;
break;
case 34: // Select
Opcode = Instruction::Select;
break;
case 38: // ExtractElement
Opcode = Instruction::ExtractElement;
break;
case 39: // InsertElement
Opcode = Instruction::InsertElement;
break;
case 40: // ShuffleVector
Opcode = Instruction::ShuffleVector;
break;
}
return 0;
}
/// Parse a single constant value
Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
@ -1810,12 +1301,6 @@ Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
}
// Handle backwards compatibility for the opcode numbers
if (Constant *C = upgradeCEOpcodes(Opcode, ArgVec, TypeID)) {
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, C);
return C;
}
// Construct a ConstantExpr of the appropriate kind
if (isExprNumArgs == 1) { // All one-operand expressions
if (!Instruction::isCast(Opcode))
@ -2200,22 +1685,6 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
delete PlaceHolder;
}
// If upgraded intrinsic functions were detected during reading of the
// module information, then we need to look for instructions that need to
// be upgraded. This can't be done while the instructions are read in because
// additional instructions inserted mess up the slot numbering.
if (!upgradedFunctions.empty()) {
for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
for (BasicBlock::iterator II = BI->begin(), IE = BI->end();
II != IE;)
if (CallInst* CI = dyn_cast<CallInst>(II++)) {
std::map<Function*,Function*>::iterator FI =
upgradedFunctions.find(CI->getCalledFunction());
if (FI != upgradedFunctions.end())
UpgradeIntrinsicCall(CI, FI->second);
}
}
// Clear out function-level types...
FunctionTypes.clear();
CompactionTypes.clear();
@ -2520,47 +1989,10 @@ void BytecodeReader::ParseVersionInfo() {
RevisionNum = Version >> 4;
// Default the backwards compatibility flag values for the current BC version
hasSignlessDivRem = false;
hasSignlessShrCastSetcc = false;
// Determine which backwards compatibility flags to set based on the
// bytecode file's version number
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 (Released)
case 1: // LLVM 1.2 (Released)
case 2: // 1.2.5 (Not Released)
case 3: // LLVM 1.3 (Released)
case 4: // 1.3.1 (Not Released)
error("Old bytecode formats no longer supported");
break;
case 5: // 1.4 (Released)
// In version 6, the Div and Rem instructions were converted to their
// signed and floating point counterparts: UDiv, SDiv, FDiv, URem, SRem,
// and FRem. Versions prior to 6 need to indicate that they have the
// signless Div and Rem instructions.
hasSignlessDivRem = true;
// FALL THROUGH
case 6: // 1.9 (Released)
// In version 5 and prior, instructions were signless while integer types
// were signed. In version 6, instructions became signed and types became
// signless. For example in version 5 we have the DIV instruction but in
// version 6 we have FDIV, SDIV and UDIV to replace it. This caused a
// renumbering of the instruction codes in version 6 that must be dealt with
// when reading old bytecode files.
hasSignlessShrCastSetcc = true;
// FALL THROUGH
case 7:
break;
default:
error("Unknown bytecode version number: " + itostr(RevisionNum));
}
// We don't provide backwards compatibility in the Reader any more. To
// upgrade, the user should use llvm-upgrade.
if (RevisionNum < 7)
error("Bytecode formats < 7 are no longer supported. Use llvm-upgrade.");
if (hasNoEndianness) Endianness = Module::AnyEndianness;
if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
@ -2747,16 +2179,6 @@ bool BytecodeReader::ParseBytecode(volatile BufPtr Buf, unsigned Length,
if (hasFunctions())
error("Function expected, but bytecode stream ended!");
// Look for intrinsic functions to upgrade, upgrade them, and save the
// mapping from old function to new for use later when instructions are
// converted.
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI)
if (Function* newF = UpgradeIntrinsicFunction(FI)) {
upgradedFunctions.insert(std::make_pair(FI, newF));
FI->setName("");
}
// Tell the handler we're done with the module
if (Handler)
Handler->handleModuleEnd(ModuleID);

View File

@ -226,26 +226,6 @@ protected:
Function* F ///< The function into which BBs will be inserted
);
/// Convert previous opcode values into the current value and/or construct
/// the instruction. This function handles all *abnormal* cases for
/// instruction generation based on obsolete opcode values. The normal cases
/// are handled by the ParseInstruction function.
Instruction *upgradeInstrOpcodes(
unsigned &opcode, ///< The old opcode, possibly updated by this function
std::vector<unsigned> &Oprnds, ///< The operands to the instruction
unsigned &iType, ///< The type code from the bytecode file
const Type *InstTy, ///< The type of the instruction
BasicBlock *BB ///< The basic block to insert into, if we need to
);
/// @brief Convert previous opcode values for ConstantExpr into the current
/// value.
Constant *upgradeCEOpcodes(
unsigned &Opcode, ///< Opcode read from bytecode
const std::vector<Constant*> &ArgVec, ///< Arguments of instruction
unsigned TypeID ///< TypeID of the instruction type
);
/// @brief Parse a single instruction.
void ParseInstruction(
std::vector<unsigned>& Args, ///< The arguments to be filled in
@ -291,24 +271,6 @@ private:
///
unsigned char RevisionNum; // The rev # itself
/// Flags to distinguish LLVM 1.0 & 1.1 bytecode formats (revision #0)
// In version 6, the Div and Rem instructions were converted to be the
// signed instructions UDiv, SDiv, URem and SRem. This flag will be true if
// the Div and Rem instructions are signless (ver 5 and prior).
bool hasSignlessDivRem;
// In version 7, the Shr, Cast and Setcc instructions changed to their
// signed counterparts. This flag will be true if these instructions are
// signless (version 6 and prior).
bool hasSignlessShrCastSetcc;
/// In release 1.7 we changed intrinsic functions to not be overloaded. There
/// is no bytecode change for this, but to optimize the auto-upgrade of calls
/// to intrinsic functions, we save a mapping of old function definitions to
/// the new ones so call instructions can be upgraded efficiently.
std::map<Function*,Function*> upgradedFunctions;
/// CompactionTypes - If a compaction table is active in the current function,
/// this is the mapping that it contains. We keep track of what resolved type
/// it is as well as what global type entry it is.