mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Moved this file to lib/Bytecode/Writer because its used there only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13900 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
		| @@ -1,116 +0,0 @@ | ||||
| //===-- SlotTable.cpp - Abstract data type for slot numbers ---------------===// | ||||
| //  | ||||
| //                     The LLVM Compiler Infrastructure | ||||
| // | ||||
| // This file was developed by the LLVM research group and is distributed under | ||||
| // the University of Illinois Open Source License. See LICENSE.TXT for details. | ||||
| //  | ||||
| //===----------------------------------------------------------------------===// | ||||
| // | ||||
| // This file implements an abstract data type for keeping track of slot numbers  | ||||
| // for bytecode and assembly writing or any other purpose.  | ||||
| // | ||||
| //===----------------------------------------------------------------------===// | ||||
|  | ||||
| #include "llvm/Internal/SlotTable.h" | ||||
| #include "llvm/Constants.h" | ||||
| #include "llvm/Type.h" | ||||
| #include "llvm/GlobalValue.h" | ||||
|  | ||||
| using namespace llvm; | ||||
|  | ||||
| //===----------------------------------------------------------------------===// | ||||
| //                            SlotTable Implementation | ||||
| //===----------------------------------------------------------------------===// | ||||
|  | ||||
| SlotTable::SlotTable( bool dont_insert_primitives ) { | ||||
|   if ( ! dont_insert_primitives )  | ||||
|     this->insertPrimitives(); | ||||
| } | ||||
|  | ||||
| // empty - determine if the slot table is completely empty. | ||||
| bool SlotTable::empty() const { | ||||
|   return vTable.empty() && vMap.empty() && tPlane.empty() && tMap.empty(); | ||||
| } | ||||
|  | ||||
| // getSlot - get the slot number associated with value Val | ||||
| SlotTable::SlotNum SlotTable::getSlot(const Value* Val) const { | ||||
|   ValueMap::const_iterator I = vMap.find( Val ); | ||||
|   if ( I != vMap.end() ) | ||||
|     return I->second; | ||||
|  | ||||
|   // Do not number ConstantPointerRef's at all.  They are an abomination. | ||||
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Val)) | ||||
|     return this->getSlot(CPR->getValue()); | ||||
|  | ||||
|   return BAD_SLOT; | ||||
| } | ||||
|  | ||||
| // getSlot - get the slot number associated with type Typ | ||||
| SlotTable::SlotNum SlotTable::getSlot(const Type* Typ) const { | ||||
|   TypeMap::const_iterator I = tMap.find( Typ ); | ||||
|   if ( I != tMap.end() ) | ||||
|     return I->second; | ||||
|  | ||||
|   return BAD_SLOT; | ||||
| } | ||||
|  | ||||
| // clear - completely clear the slot table of all entries | ||||
| void SlotTable::clear() { | ||||
|   vTable.clear(); | ||||
|   vMap.clear(); | ||||
|   tPlane.clear(); | ||||
|   tMap.clear(); | ||||
| } | ||||
|  | ||||
| // resize - make sure there's enough room for specific number of planes | ||||
| void SlotTable::resize( size_t new_size ) { | ||||
|   vTable.resize( new_size ); | ||||
| } | ||||
|  | ||||
| // insert - insert a Value into a specific plane | ||||
| SlotTable::SlotNum SlotTable::insert( const Value* Val, PlaneNum plane ) { | ||||
|   if ( vTable.size() <= plane ) // Make sure we have the type plane allocated | ||||
|     vTable.resize(plane+1, ValuePlane()); | ||||
|  | ||||
|   // Insert node into table and map | ||||
|   SlotNum DestSlot = vMap[Val] = vTable[plane].size(); | ||||
|   vTable[plane].push_back(Val); | ||||
|   return DestSlot; | ||||
| } | ||||
|  | ||||
| // insert - insert a type  | ||||
| SlotTable::SlotNum SlotTable::insert( const Type* Typ ) { | ||||
|   // Insert node into table and map making sure that | ||||
|   // the same type isn't inserted twice. | ||||
|   assert(tMap.find(Typ) == tMap.end() && "Can't insert a Type multiple times"); | ||||
|   SlotNum DestSlot = tMap[Typ] = tPlane.size(); | ||||
|   tPlane.push_back(Typ); | ||||
|   return DestSlot; | ||||
| } | ||||
|  | ||||
| // remove - remove a value from the slot table | ||||
| SlotTable::SlotNum SlotTable::remove( const Value* Val, PlaneNum plane ) { | ||||
|   // FIXME: not implemented - not sure we need it | ||||
|   return BAD_SLOT; | ||||
| } | ||||
|  | ||||
| // remove - remove a type from the slot table | ||||
| SlotTable::SlotNum SlotTable::remove( const Type* Typ ) { | ||||
|   // FIXME: not implemented - not sure we need it | ||||
|   return BAD_SLOT; | ||||
| } | ||||
|  | ||||
| // insertPrimitives - insert the primitive types for initialization | ||||
| // Make sure that all of the primitive types are in the table | ||||
| // and that their Primitive ID is equal to their slot # | ||||
| void SlotTable::insertPrimitives() { | ||||
|   for (PlaneNum plane = 0; plane < Type::FirstDerivedTyID; ++plane) { | ||||
|     const Type* Ty = Type::getPrimitiveType((Type::PrimitiveID) plane); | ||||
|     assert(Ty && "Couldn't get primitive type id"); | ||||
|     SlotNum slot = this->insert(Ty); | ||||
|     assert(slot == plane && "Type slot didn't match plane number"); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // vim: sw=2 | ||||
| @@ -1,786 +0,0 @@ | ||||
| //===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// | ||||
| //  | ||||
| //                     The LLVM Compiler Infrastructure | ||||
| // | ||||
| // This file was developed by the LLVM research group and is distributed under | ||||
| // the University of Illinois Open Source License. See LICENSE.TXT for details. | ||||
| //  | ||||
| //===----------------------------------------------------------------------===// | ||||
| // | ||||
| // This file implements a useful analysis step to figure out what numbered slots | ||||
| // values in a program will land in (keeping track of per plane information). | ||||
| // | ||||
| // This is used when writing a file to disk, either in bytecode or assembly. | ||||
| // | ||||
| //===----------------------------------------------------------------------===// | ||||
|  | ||||
| #include "llvm/Analysis/SlotCalculator.h" | ||||
| #include "llvm/Constants.h" | ||||
| #include "llvm/DerivedTypes.h" | ||||
| #include "llvm/iOther.h" | ||||
| #include "llvm/Module.h" | ||||
| #include "llvm/SymbolTable.h" | ||||
| #include "llvm/Analysis/ConstantsScanner.h" | ||||
| #include "Support/PostOrderIterator.h" | ||||
| #include "Support/STLExtras.h" | ||||
| #include <algorithm> | ||||
| using namespace llvm; | ||||
|  | ||||
| #if 0 | ||||
| #define SC_DEBUG(X) std::cerr << X | ||||
| #else | ||||
| #define SC_DEBUG(X) | ||||
| #endif | ||||
|  | ||||
| SlotCalculator::SlotCalculator(const Module *M ) { | ||||
|   ModuleContainsAllFunctionConstants = false; | ||||
|   TheModule = M; | ||||
|  | ||||
|   // Preload table... Make sure that all of the primitive types are in the table | ||||
|   // and that their Primitive ID is equal to their slot # | ||||
|   // | ||||
|   SC_DEBUG("Inserting primitive types:\n"); | ||||
|   for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { | ||||
|     assert(Type::getPrimitiveType((Type::PrimitiveID)i)); | ||||
|     insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); | ||||
|   } | ||||
|  | ||||
|   if (M == 0) return;   // Empty table... | ||||
|   processModule(); | ||||
| } | ||||
|  | ||||
| SlotCalculator::SlotCalculator(const Function *M ) { | ||||
|   ModuleContainsAllFunctionConstants = false; | ||||
|   TheModule = M ? M->getParent() : 0; | ||||
|  | ||||
|   // Preload table... Make sure that all of the primitive types are in the table | ||||
|   // and that their Primitive ID is equal to their slot # | ||||
|   // | ||||
|   SC_DEBUG("Inserting primitive types:\n"); | ||||
|   for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { | ||||
|     assert(Type::getPrimitiveType((Type::PrimitiveID)i)); | ||||
|     insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); | ||||
|   } | ||||
|  | ||||
|   if (TheModule == 0) return;   // Empty table... | ||||
|  | ||||
|   processModule();              // Process module level stuff | ||||
|   incorporateFunction(M);       // Start out in incorporated state | ||||
| } | ||||
|  | ||||
| unsigned SlotCalculator::getGlobalSlot(const Value *V) const { | ||||
|   assert(!CompactionTable.empty() && | ||||
|          "This method can only be used when compaction is enabled!"); | ||||
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) | ||||
|     V = CPR->getValue(); | ||||
|   std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(V); | ||||
|   assert(I != NodeMap.end() && "Didn't find global slot entry!"); | ||||
|   return I->second; | ||||
| } | ||||
|  | ||||
| SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) { | ||||
|   unsigned PIdx = Plane; | ||||
|   if (CompactionTable.empty()) {                // No compaction table active? | ||||
|     // fall out | ||||
|   } else if (!CompactionTable[Plane].empty()) { // Compaction table active. | ||||
|     assert(Plane < CompactionTable.size()); | ||||
|     return CompactionTable[Plane]; | ||||
|   } else { | ||||
|     // Final case: compaction table active, but this plane is not | ||||
|     // compactified.  If the type plane is compactified, unmap back to the | ||||
|     // global type plane corresponding to "Plane". | ||||
|     if (!CompactionTable[Type::TypeTyID].empty()) { | ||||
|       const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][Plane]); | ||||
|       std::map<const Value*, unsigned>::iterator It = NodeMap.find(Ty); | ||||
|       assert(It != NodeMap.end() && "Type not in global constant map?"); | ||||
|       PIdx = It->second; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // Okay we are just returning an entry out of the main Table.  Make sure the | ||||
|   // plane exists and return it. | ||||
|   if (PIdx >= Table.size()) | ||||
|     Table.resize(PIdx+1); | ||||
|   return Table[PIdx]; | ||||
| } | ||||
|  | ||||
|  | ||||
| // processModule - Process all of the module level function declarations and | ||||
| // types that are available. | ||||
| // | ||||
| void SlotCalculator::processModule() { | ||||
|   SC_DEBUG("begin processModule!\n"); | ||||
|  | ||||
|   // Add all of the global variables to the value table... | ||||
|   // | ||||
|   for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); | ||||
|        I != E; ++I) | ||||
|     getOrCreateSlot(I); | ||||
|  | ||||
|   // Scavenge the types out of the functions, then add the functions themselves | ||||
|   // to the value table... | ||||
|   // | ||||
|   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); | ||||
|        I != E; ++I) | ||||
|     getOrCreateSlot(I); | ||||
|  | ||||
|   // Add all of the module level constants used as initializers | ||||
|   // | ||||
|   for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); | ||||
|        I != E; ++I) | ||||
|     if (I->hasInitializer()) | ||||
|       getOrCreateSlot(I->getInitializer()); | ||||
|  | ||||
|   // Now that all global constants have been added, rearrange constant planes | ||||
|   // that contain constant strings so that the strings occur at the start of the | ||||
|   // plane, not somewhere in the middle. | ||||
|   // | ||||
|   TypePlane &Types = Table[Type::TypeTyID]; | ||||
|   for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { | ||||
|     if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane])) | ||||
|       if (AT->getElementType() == Type::SByteTy || | ||||
| 	  AT->getElementType() == Type::UByteTy) { | ||||
| 	TypePlane &Plane = Table[plane]; | ||||
| 	unsigned FirstNonStringID = 0; | ||||
| 	for (unsigned i = 0, e = Plane.size(); i != e; ++i) | ||||
| 	  if (isa<ConstantAggregateZero>(Plane[i]) || | ||||
| 	      cast<ConstantArray>(Plane[i])->isString()) { | ||||
| 	    // Check to see if we have to shuffle this string around.  If not, | ||||
| 	    // don't do anything. | ||||
| 	    if (i != FirstNonStringID) { | ||||
| 	      // Swap the plane entries.... | ||||
| 	      std::swap(Plane[i], Plane[FirstNonStringID]); | ||||
| 	       | ||||
| 	      // Keep the NodeMap up to date. | ||||
| 	      NodeMap[Plane[i]] = i; | ||||
| 	      NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; | ||||
| 	    } | ||||
| 	    ++FirstNonStringID; | ||||
| 	  } | ||||
|       } | ||||
|   } | ||||
|    | ||||
|   // If we are emitting a bytecode file, scan all of the functions for their | ||||
|   // constants, which allows us to emit more compact modules.  This is optional, | ||||
|   // and is just used to compactify the constants used by different functions | ||||
|   // together. | ||||
|   // | ||||
|   // This functionality is completely optional for the bytecode writer, but | ||||
|   // tends to produce smaller bytecode files.  This should not be used in the | ||||
|   // future by clients that want to, for example, build and emit functions on | ||||
|   // the fly.  For now, however, it is unconditionally enabled when building | ||||
|   // bytecode information. | ||||
|   // | ||||
|   ModuleContainsAllFunctionConstants = true; | ||||
|  | ||||
|   SC_DEBUG("Inserting function constants:\n"); | ||||
|   for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); | ||||
|        F != E; ++F) { | ||||
|     for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I){ | ||||
|       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) | ||||
| 	if (isa<Constant>(I->getOperand(op))) | ||||
| 	  getOrCreateSlot(I->getOperand(op)); | ||||
|       getOrCreateSlot(I->getType()); | ||||
|       if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I)) | ||||
| 	getOrCreateSlot(VAN->getArgType()); | ||||
|     } | ||||
|     processSymbolTableConstants(&F->getSymbolTable()); | ||||
|   } | ||||
|  | ||||
|   // Insert constants that are named at module level into the slot pool so that | ||||
|   // the module symbol table can refer to them... | ||||
|   SC_DEBUG("Inserting SymbolTable values:\n"); | ||||
|   processSymbolTable(&TheModule->getSymbolTable()); | ||||
|  | ||||
|   // Now that we have collected together all of the information relevant to the | ||||
|   // module, compactify the type table if it is particularly big and outputting | ||||
|   // a bytecode file.  The basic problem we run into is that some programs have | ||||
|   // a large number of types, which causes the type field to overflow its size, | ||||
|   // which causes instructions to explode in size (particularly call | ||||
|   // instructions).  To avoid this behavior, we "sort" the type table so that | ||||
|   // all non-value types are pushed to the end of the type table, giving nice | ||||
|   // low numbers to the types that can be used by instructions, thus reducing | ||||
|   // the amount of explodage we suffer. | ||||
|   if (Table[Type::TypeTyID].size() >= 64) { | ||||
|     // Scan through the type table moving value types to the start of the table. | ||||
|     TypePlane *Types = &Table[Type::TypeTyID]; | ||||
|     unsigned FirstNonValueTypeID = 0; | ||||
|     for (unsigned i = 0, e = Types->size(); i != e; ++i) | ||||
|       if (cast<Type>((*Types)[i])->isFirstClassType() || | ||||
|           cast<Type>((*Types)[i])->isPrimitiveType()) { | ||||
|         // Check to see if we have to shuffle this type around.  If not, don't | ||||
|         // do anything. | ||||
|         if (i != FirstNonValueTypeID) { | ||||
|           assert(i != Type::TypeTyID && FirstNonValueTypeID != Type::TypeTyID && | ||||
|                  "Cannot move around the type plane!"); | ||||
|  | ||||
|           // Swap the type ID's. | ||||
|           std::swap((*Types)[i], (*Types)[FirstNonValueTypeID]); | ||||
|  | ||||
|           // Keep the NodeMap up to date. | ||||
|           NodeMap[(*Types)[i]] = i; | ||||
|           NodeMap[(*Types)[FirstNonValueTypeID]] = FirstNonValueTypeID; | ||||
|  | ||||
|           // When we move a type, make sure to move its value plane as needed. | ||||
|           if (Table.size() > FirstNonValueTypeID) { | ||||
|             if (Table.size() <= i) Table.resize(i+1); | ||||
|             std::swap(Table[i], Table[FirstNonValueTypeID]); | ||||
|             Types = &Table[Type::TypeTyID]; | ||||
|           } | ||||
|         } | ||||
|         ++FirstNonValueTypeID; | ||||
|       } | ||||
|   } | ||||
|  | ||||
|   SC_DEBUG("end processModule!\n"); | ||||
| } | ||||
|  | ||||
| // processSymbolTable - Insert all of the values in the specified symbol table | ||||
| // into the values table... | ||||
| // | ||||
| void SlotCalculator::processSymbolTable(const SymbolTable *ST) { | ||||
|   // Do the types first. | ||||
|   for (SymbolTable::type_const_iterator TI = ST->type_begin(), | ||||
|        TE = ST->type_end(); TI != TE; ++TI ) | ||||
|     getOrCreateSlot(TI->second); | ||||
|  | ||||
|   // Now do the values. | ||||
|   for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),  | ||||
|        PE = ST->plane_end(); PI != PE; ++PI) | ||||
|     for (SymbolTable::value_const_iterator VI = PI->second.begin(), | ||||
| 	   VE = PI->second.end(); VI != VE; ++VI) | ||||
|       getOrCreateSlot(VI->second); | ||||
| } | ||||
|  | ||||
| void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { | ||||
|   // Do the types first | ||||
|   for (SymbolTable::type_const_iterator TI = ST->type_begin(), | ||||
|        TE = ST->type_end(); TI != TE; ++TI ) | ||||
|     getOrCreateSlot(TI->second); | ||||
|  | ||||
|   // Now do the constant values in all planes | ||||
|   for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),  | ||||
|        PE = ST->plane_end(); PI != PE; ++PI) | ||||
|     for (SymbolTable::value_const_iterator VI = PI->second.begin(), | ||||
| 	   VE = PI->second.end(); VI != VE; ++VI) | ||||
|       if (isa<Constant>(VI->second)) | ||||
| 	getOrCreateSlot(VI->second); | ||||
| } | ||||
|  | ||||
|  | ||||
| void SlotCalculator::incorporateFunction(const Function *F) { | ||||
|   assert(ModuleLevel.size() == 0 && "Module already incorporated!"); | ||||
|  | ||||
|   SC_DEBUG("begin processFunction!\n"); | ||||
|  | ||||
|   // If we emitted all of the function constants, build a compaction table. | ||||
|   if ( ModuleContainsAllFunctionConstants) | ||||
|     buildCompactionTable(F); | ||||
|  | ||||
|   // Update the ModuleLevel entries to be accurate. | ||||
|   ModuleLevel.resize(getNumPlanes()); | ||||
|   for (unsigned i = 0, e = getNumPlanes(); i != e; ++i) | ||||
|     ModuleLevel[i] = getPlane(i).size(); | ||||
|  | ||||
|   // Iterate over function arguments, adding them to the value table... | ||||
|   for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) | ||||
|     getOrCreateSlot(I); | ||||
|  | ||||
|   if ( !ModuleContainsAllFunctionConstants ) { | ||||
|     // Iterate over all of the instructions in the function, looking for | ||||
|     // constant values that are referenced.  Add these to the value pools | ||||
|     // before any nonconstant values.  This will be turned into the constant | ||||
|     // pool for the bytecode writer. | ||||
|     // | ||||
|      | ||||
|     // Emit all of the constants that are being used by the instructions in | ||||
|     // the function... | ||||
|     for_each(constant_begin(F), constant_end(F), | ||||
|              bind_obj(this, &SlotCalculator::getOrCreateSlot)); | ||||
|      | ||||
|     // If there is a symbol table, it is possible that the user has names for | ||||
|     // constants that are not being used.  In this case, we will have problems | ||||
|     // if we don't emit the constants now, because otherwise we will get  | ||||
|     // symbol table references to constants not in the output.  Scan for these | ||||
|     // constants now. | ||||
|     // | ||||
|     processSymbolTableConstants(&F->getSymbolTable()); | ||||
|   } | ||||
|  | ||||
|   SC_DEBUG("Inserting Instructions:\n"); | ||||
|  | ||||
|   // Add all of the instructions to the type planes... | ||||
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { | ||||
|     getOrCreateSlot(BB); | ||||
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { | ||||
|       getOrCreateSlot(I); | ||||
|       if (const VANextInst *VAN = dyn_cast<VANextInst>(I)) | ||||
|         getOrCreateSlot(VAN->getArgType()); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // If we are building a compaction table, prune out planes that do not benefit | ||||
|   // from being compactified. | ||||
|   if (!CompactionTable.empty()) | ||||
|     pruneCompactionTable(); | ||||
|  | ||||
|   SC_DEBUG("end processFunction!\n"); | ||||
| } | ||||
|  | ||||
| void SlotCalculator::purgeFunction() { | ||||
|   assert(ModuleLevel.size() != 0 && "Module not incorporated!"); | ||||
|   unsigned NumModuleTypes = ModuleLevel.size(); | ||||
|  | ||||
|   SC_DEBUG("begin purgeFunction!\n"); | ||||
|  | ||||
|   // First, free the compaction map if used. | ||||
|   CompactionNodeMap.clear(); | ||||
|  | ||||
|   // Next, remove values from existing type planes | ||||
|   for (unsigned i = 0; i != NumModuleTypes; ++i) { | ||||
|     // Size of plane before function came | ||||
|     unsigned ModuleLev = getModuleLevel(i); | ||||
|     assert(int(ModuleLev) >= 0 && "BAD!"); | ||||
|  | ||||
|     TypePlane &Plane = getPlane(i); | ||||
|  | ||||
|     assert(ModuleLev <= Plane.size() && "module levels higher than elements?"); | ||||
|     while (Plane.size() != ModuleLev) { | ||||
|       assert(!isa<GlobalValue>(Plane.back()) && | ||||
|              "Functions cannot define globals!"); | ||||
|       NodeMap.erase(Plane.back());       // Erase from nodemap | ||||
|       Plane.pop_back();                  // Shrink plane | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // We don't need this state anymore, free it up. | ||||
|   ModuleLevel.clear(); | ||||
|  | ||||
|   // Finally, remove any type planes defined by the function... | ||||
|   if (!CompactionTable.empty()) { | ||||
|     CompactionTable.clear(); | ||||
|   } else { | ||||
|     while (Table.size() > NumModuleTypes) { | ||||
|       TypePlane &Plane = Table.back(); | ||||
|       SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " | ||||
|                << Plane.size() << "\n"); | ||||
|       while (Plane.size()) { | ||||
|         assert(!isa<GlobalValue>(Plane.back()) && | ||||
|                "Functions cannot define globals!"); | ||||
|         NodeMap.erase(Plane.back());   // Erase from nodemap | ||||
|         Plane.pop_back();              // Shrink plane | ||||
|       } | ||||
|        | ||||
|       Table.pop_back();                // Nuke the plane, we don't like it. | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   SC_DEBUG("end purgeFunction!\n"); | ||||
| } | ||||
|  | ||||
| static inline bool hasNullValue(unsigned TyID) { | ||||
|   return TyID != Type::LabelTyID && TyID != Type::TypeTyID && | ||||
|          TyID != Type::VoidTyID; | ||||
| } | ||||
|  | ||||
| /// getOrCreateCompactionTableSlot - This method is used to build up the initial | ||||
| /// approximation of the compaction table. | ||||
| unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) { | ||||
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) | ||||
|     V = CPR->getValue(); | ||||
|   std::map<const Value*, unsigned>::iterator I = | ||||
|     CompactionNodeMap.lower_bound(V); | ||||
|   if (I != CompactionNodeMap.end() && I->first == V) | ||||
|     return I->second;  // Already exists? | ||||
|  | ||||
|   // Make sure the type is in the table. | ||||
|   unsigned Ty; | ||||
|   if (!CompactionTable[Type::TypeTyID].empty()) | ||||
|     Ty = getOrCreateCompactionTableSlot(V->getType()); | ||||
|   else    // If the type plane was decompactified, use the global plane ID | ||||
|     Ty = getSlot(V->getType()); | ||||
|   if (CompactionTable.size() <= Ty) | ||||
|     CompactionTable.resize(Ty+1); | ||||
|  | ||||
|   assert(!isa<Type>(V) || ModuleLevel.empty()); | ||||
|  | ||||
|   TypePlane &TyPlane = CompactionTable[Ty]; | ||||
|  | ||||
|   // Make sure to insert the null entry if the thing we are inserting is not a | ||||
|   // null constant. | ||||
|   if (TyPlane.empty() && hasNullValue(V->getType()->getPrimitiveID())) { | ||||
|     Value *ZeroInitializer = Constant::getNullValue(V->getType()); | ||||
|     if (V != ZeroInitializer) { | ||||
|       TyPlane.push_back(ZeroInitializer); | ||||
|       CompactionNodeMap[ZeroInitializer] = 0; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   unsigned SlotNo = TyPlane.size(); | ||||
|   TyPlane.push_back(V); | ||||
|   CompactionNodeMap.insert(std::make_pair(V, SlotNo)); | ||||
|   return SlotNo; | ||||
| } | ||||
|  | ||||
|  | ||||
| /// buildCompactionTable - Since all of the function constants and types are | ||||
| /// stored in the module-level constant table, we don't need to emit a function | ||||
| /// constant table.  Also due to this, the indices for various constants and | ||||
| /// types might be very large in large programs.  In order to avoid blowing up | ||||
| /// the size of instructions in the bytecode encoding, we build a compaction | ||||
| /// table, which defines a mapping from function-local identifiers to global | ||||
| /// identifiers. | ||||
| void SlotCalculator::buildCompactionTable(const Function *F) { | ||||
|   assert(CompactionNodeMap.empty() && "Compaction table already built!"); | ||||
|   // First step, insert the primitive types. | ||||
|   CompactionTable.resize(Type::TypeTyID+1); | ||||
|   for (unsigned i = 0; i != Type::FirstDerivedTyID; ++i) { | ||||
|     const Type *PrimTy = Type::getPrimitiveType((Type::PrimitiveID)i); | ||||
|     CompactionTable[Type::TypeTyID].push_back(PrimTy); | ||||
|     CompactionNodeMap[PrimTy] = i; | ||||
|   } | ||||
|  | ||||
|   // Next, include any types used by function arguments. | ||||
|   for (Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) | ||||
|     getOrCreateCompactionTableSlot(I->getType()); | ||||
|  | ||||
|   // Next, find all of the types and values that are referred to by the | ||||
|   // instructions in the program. | ||||
|   for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { | ||||
|     getOrCreateCompactionTableSlot(I->getType()); | ||||
|     for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) | ||||
|       if (isa<Constant>(I->getOperand(op)) || | ||||
|           isa<GlobalValue>(I->getOperand(op))) | ||||
|         getOrCreateCompactionTableSlot(I->getOperand(op)); | ||||
|     if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I)) | ||||
|       getOrCreateCompactionTableSlot(VAN->getArgType()); | ||||
|   } | ||||
|  | ||||
|   // Do the types in the symbol table | ||||
|   const SymbolTable &ST = F->getSymbolTable(); | ||||
|   for (SymbolTable::type_const_iterator TI = ST.type_begin(), | ||||
|        TE = ST.type_end(); TI != TE; ++TI) | ||||
|     getOrCreateCompactionTableSlot(TI->second); | ||||
|  | ||||
|   // Now do the constants and global values | ||||
|   for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),  | ||||
|        PE = ST.plane_end(); PI != PE; ++PI) | ||||
|     for (SymbolTable::value_const_iterator VI = PI->second.begin(), | ||||
| 	   VE = PI->second.end(); VI != VE; ++VI) | ||||
|       if (isa<Constant>(VI->second) || isa<GlobalValue>(VI->second)) | ||||
| 	getOrCreateCompactionTableSlot(VI->second); | ||||
|  | ||||
|   // Now that we have all of the values in the table, and know what types are | ||||
|   // referenced, make sure that there is at least the zero initializer in any | ||||
|   // used type plane.  Since the type was used, we will be emitting instructions | ||||
|   // to the plane even if there are no constants in it. | ||||
|   CompactionTable.resize(CompactionTable[Type::TypeTyID].size()); | ||||
|   for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i) | ||||
|     if (CompactionTable[i].empty() && i != Type::VoidTyID && | ||||
|         i != Type::LabelTyID) { | ||||
|       const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][i]); | ||||
|       getOrCreateCompactionTableSlot(Constant::getNullValue(Ty)); | ||||
|     } | ||||
|    | ||||
|   // Okay, now at this point, we have a legal compaction table.  Since we want | ||||
|   // to emit the smallest possible binaries, do not compactify the type plane if | ||||
|   // it will not save us anything.  Because we have not yet incorporated the | ||||
|   // function body itself yet, we don't know whether or not it's a good idea to | ||||
|   // compactify other planes.  We will defer this decision until later. | ||||
|   TypePlane &GlobalTypes = Table[Type::TypeTyID]; | ||||
|    | ||||
|   // All of the values types will be scrunched to the start of the types plane | ||||
|   // of the global table.  Figure out just how many there are. | ||||
|   assert(!GlobalTypes.empty() && "No global types???"); | ||||
|   unsigned NumFCTypes = GlobalTypes.size()-1; | ||||
|   while (!cast<Type>(GlobalTypes[NumFCTypes])->isFirstClassType()) | ||||
|     --NumFCTypes; | ||||
|  | ||||
|   // If there are fewer that 64 types, no instructions will be exploded due to | ||||
|   // the size of the type operands.  Thus there is no need to compactify types. | ||||
|   // Also, if the compaction table contains most of the entries in the global | ||||
|   // table, there really is no reason to compactify either. | ||||
|   if (NumFCTypes < 64) { | ||||
|     // Decompactifying types is tricky, because we have to move type planes all | ||||
|     // over the place.  At least we don't need to worry about updating the | ||||
|     // CompactionNodeMap for non-types though. | ||||
|     std::vector<TypePlane> TmpCompactionTable; | ||||
|     std::swap(CompactionTable, TmpCompactionTable); | ||||
|     TypePlane Types; | ||||
|     std::swap(Types, TmpCompactionTable[Type::TypeTyID]); | ||||
|      | ||||
|     // Move each plane back over to the uncompactified plane | ||||
|     while (!Types.empty()) { | ||||
|       const Type *Ty = cast<Type>(Types.back()); | ||||
|       Types.pop_back(); | ||||
|       CompactionNodeMap.erase(Ty);  // Decompactify type! | ||||
|  | ||||
|       if (Ty != Type::TypeTy) { | ||||
|         // Find the global slot number for this type. | ||||
|         int TySlot = getSlot(Ty); | ||||
|         assert(TySlot != -1 && "Type doesn't exist in global table?"); | ||||
|          | ||||
|         // Now we know where to put the compaction table plane. | ||||
|         if (CompactionTable.size() <= unsigned(TySlot)) | ||||
|           CompactionTable.resize(TySlot+1); | ||||
|         // Move the plane back into the compaction table. | ||||
|         std::swap(CompactionTable[TySlot], TmpCompactionTable[Types.size()]); | ||||
|  | ||||
|         // And remove the empty plane we just moved in. | ||||
|         TmpCompactionTable.pop_back(); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| /// pruneCompactionTable - Once the entire function being processed has been | ||||
| /// incorporated into the current compaction table, look over the compaction | ||||
| /// table and check to see if there are any values whose compaction will not | ||||
| /// save us any space in the bytecode file.  If compactifying these values | ||||
| /// serves no purpose, then we might as well not even emit the compactification | ||||
| /// information to the bytecode file, saving a bit more space. | ||||
| /// | ||||
| /// Note that the type plane has already been compactified if possible. | ||||
| /// | ||||
| void SlotCalculator::pruneCompactionTable() { | ||||
|   TypePlane &TyPlane = CompactionTable[Type::TypeTyID]; | ||||
|   for (unsigned ctp = 0, e = CompactionTable.size(); ctp != e; ++ctp) | ||||
|     if (ctp != Type::TypeTyID && !CompactionTable[ctp].empty()) { | ||||
|       TypePlane &CPlane = CompactionTable[ctp]; | ||||
|       unsigned GlobalSlot = ctp; | ||||
|       if (!TyPlane.empty()) | ||||
|         GlobalSlot = getGlobalSlot(TyPlane[ctp]); | ||||
|  | ||||
|       if (GlobalSlot >= Table.size()) | ||||
|         Table.resize(GlobalSlot+1); | ||||
|       TypePlane &GPlane = Table[GlobalSlot]; | ||||
|        | ||||
|       unsigned ModLevel = getModuleLevel(ctp); | ||||
|       unsigned NumFunctionObjs = CPlane.size()-ModLevel; | ||||
|  | ||||
|       // If the maximum index required if all entries in this plane were merged | ||||
|       // into the global plane is less than 64, go ahead and eliminate the | ||||
|       // plane. | ||||
|       bool PrunePlane = GPlane.size() + NumFunctionObjs < 64; | ||||
|  | ||||
|       // If there are no function-local values defined, and the maximum | ||||
|       // referenced global entry is less than 64, we don't need to compactify. | ||||
|       if (!PrunePlane && NumFunctionObjs == 0) { | ||||
|         unsigned MaxIdx = 0; | ||||
|         for (unsigned i = 0; i != ModLevel; ++i) { | ||||
|           unsigned Idx = NodeMap[CPlane[i]]; | ||||
|           if (Idx > MaxIdx) MaxIdx = Idx; | ||||
|         } | ||||
|         PrunePlane = MaxIdx < 64; | ||||
|       } | ||||
|  | ||||
|       // Ok, finally, if we decided to prune this plane out of the compaction | ||||
|       // table, do so now. | ||||
|       if (PrunePlane) { | ||||
|         TypePlane OldPlane; | ||||
|         std::swap(OldPlane, CPlane); | ||||
|  | ||||
|         // Loop over the function local objects, relocating them to the global | ||||
|         // table plane. | ||||
|         for (unsigned i = ModLevel, e = OldPlane.size(); i != e; ++i) { | ||||
|           const Value *V = OldPlane[i]; | ||||
|           CompactionNodeMap.erase(V); | ||||
|           assert(NodeMap.count(V) == 0 && "Value already in table??"); | ||||
|           getOrCreateSlot(V); | ||||
|         } | ||||
|  | ||||
|         // For compactified global values, just remove them from the compaction | ||||
|         // node map. | ||||
|         for (unsigned i = 0; i != ModLevel; ++i) | ||||
|           CompactionNodeMap.erase(OldPlane[i]); | ||||
|  | ||||
|         // Update the new modulelevel for this plane. | ||||
|         assert(ctp < ModuleLevel.size() && "Cannot set modulelevel!"); | ||||
|         ModuleLevel[ctp] = GPlane.size()-NumFunctionObjs; | ||||
|         assert((int)ModuleLevel[ctp] >= 0 && "Bad computation!"); | ||||
|       } | ||||
|     } | ||||
| } | ||||
|  | ||||
|  | ||||
| int SlotCalculator::getSlot(const Value *V) const { | ||||
|   // If there is a CompactionTable active... | ||||
|   if (!CompactionNodeMap.empty()) { | ||||
|     std::map<const Value*, unsigned>::const_iterator I = | ||||
|       CompactionNodeMap.find(V); | ||||
|     if (I != CompactionNodeMap.end()) | ||||
|       return (int)I->second; | ||||
|     // Otherwise, if it's not in the compaction table, it must be in a | ||||
|     // non-compactified plane. | ||||
|   } | ||||
|  | ||||
|   std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(V); | ||||
|   if (I != NodeMap.end()) | ||||
|     return (int)I->second; | ||||
|  | ||||
|   // Do not number ConstantPointerRef's at all.  They are an abomination. | ||||
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) | ||||
|     return getSlot(CPR->getValue()); | ||||
|  | ||||
|   return -1; | ||||
| } | ||||
|  | ||||
|  | ||||
| int SlotCalculator::getOrCreateSlot(const Value *V) { | ||||
|   if (V->getType() == Type::VoidTy) return -1; | ||||
|  | ||||
|   int SlotNo = getSlot(V);        // Check to see if it's already in! | ||||
|   if (SlotNo != -1) return SlotNo; | ||||
|  | ||||
|   // Do not number ConstantPointerRef's at all.  They are an abomination. | ||||
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) | ||||
|     return getOrCreateSlot(CPR->getValue()); | ||||
|  | ||||
|   if (!isa<GlobalValue>(V))  // Initializers for globals are handled explicitly | ||||
|     if (const Constant *C = dyn_cast<Constant>(V)) { | ||||
|       assert(CompactionNodeMap.empty() && | ||||
|              "All needed constants should be in the compaction map already!"); | ||||
|  | ||||
|       // Do not index the characters that make up constant strings.  We emit  | ||||
|       // constant strings as special entities that don't require their  | ||||
|       // individual characters to be emitted. | ||||
|       if (!isa<ConstantArray>(C) || !cast<ConstantArray>(C)->isString()) { | ||||
|         // This makes sure that if a constant has uses (for example an array of | ||||
|         // const ints), that they are inserted also. | ||||
|         // | ||||
|         for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); | ||||
|              I != E; ++I) | ||||
|           getOrCreateSlot(*I); | ||||
|       } else { | ||||
|         assert(ModuleLevel.empty() && | ||||
|                "How can a constant string be directly accessed in a function?"); | ||||
|         // Otherwise, if we are emitting a bytecode file and this IS a string, | ||||
|         // remember it. | ||||
|         if (!C->isNullValue()) | ||||
|           ConstantStrings.push_back(cast<ConstantArray>(C)); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|   return insertValue(V); | ||||
| } | ||||
|  | ||||
|  | ||||
| int SlotCalculator::insertValue(const Value *D, bool dontIgnore) { | ||||
|   assert(D && "Can't insert a null value!"); | ||||
|   assert(getSlot(D) == -1 && "Value is already in the table!"); | ||||
|  | ||||
|   // If we are building a compaction map, and if this plane is being compacted, | ||||
|   // insert the value into the compaction map, not into the global map. | ||||
|   if (!CompactionNodeMap.empty()) { | ||||
|     if (D->getType() == Type::VoidTy) return -1;  // Do not insert void values | ||||
|     assert(!isa<Type>(D) && !isa<Constant>(D) && !isa<GlobalValue>(D) && | ||||
|            "Types, constants, and globals should be in global SymTab!"); | ||||
|  | ||||
|     int Plane = getSlot(D->getType()); | ||||
|     assert(Plane != -1 && CompactionTable.size() > (unsigned)Plane && | ||||
|            "Didn't find value type!"); | ||||
|     if (!CompactionTable[Plane].empty()) | ||||
|       return getOrCreateCompactionTableSlot(D); | ||||
|   } | ||||
|  | ||||
|   // If this node does not contribute to a plane, or if the node has a  | ||||
|   // name and we don't want names, then ignore the silly node... Note that types | ||||
|   // do need slot numbers so that we can keep track of where other values land. | ||||
|   // | ||||
|   if (!dontIgnore)                               // Don't ignore nonignorables! | ||||
|     if (D->getType() == Type::VoidTy ) {         // Ignore void type nodes | ||||
|       SC_DEBUG("ignored value " << *D << "\n"); | ||||
|       return -1;                  // We do need types unconditionally though | ||||
|     } | ||||
|  | ||||
|   // If it's a type, make sure that all subtypes of the type are included... | ||||
|   if (const Type *TheTy = dyn_cast<Type>(D)) { | ||||
|  | ||||
|     // Insert the current type before any subtypes.  This is important because | ||||
|     // recursive types elements are inserted in a bottom up order.  Changing | ||||
|     // this here can break things.  For example: | ||||
|     // | ||||
|     //    global { \2 * } { { \2 }* null } | ||||
|     // | ||||
|     int ResultSlot = doInsertValue(TheTy); | ||||
|     SC_DEBUG("  Inserted type: " << TheTy->getDescription() << " slot=" << | ||||
|              ResultSlot << "\n"); | ||||
|  | ||||
|     // Loop over any contained types in the definition... in post | ||||
|     // order. | ||||
|     // | ||||
|     for (po_iterator<const Type*> I = po_begin(TheTy), E = po_end(TheTy); | ||||
|          I != E; ++I) { | ||||
|       if (*I != TheTy) { | ||||
|         const Type *SubTy = *I; | ||||
| 	// If we haven't seen this sub type before, add it to our type table! | ||||
|         if (getSlot(SubTy) == -1) { | ||||
|           SC_DEBUG("  Inserting subtype: " << SubTy->getDescription() << "\n"); | ||||
|           int Slot = doInsertValue(SubTy); | ||||
|           SC_DEBUG("  Inserted subtype: " << SubTy->getDescription() <<  | ||||
|                    " slot=" << Slot << "\n"); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     return ResultSlot; | ||||
|   } | ||||
|  | ||||
|   // Okay, everything is happy, actually insert the silly value now... | ||||
|   return doInsertValue(D); | ||||
| } | ||||
|  | ||||
| // doInsertValue - This is a small helper function to be called only | ||||
| // be insertValue. | ||||
| // | ||||
| int SlotCalculator::doInsertValue(const Value *D) { | ||||
|   const Type *Typ = D->getType(); | ||||
|   unsigned Ty; | ||||
|  | ||||
|   // Used for debugging DefSlot=-1 assertion... | ||||
|   //if (Typ == Type::TypeTy) | ||||
|   //  cerr << "Inserting type '" << cast<Type>(D)->getDescription() << "'!\n"; | ||||
|  | ||||
|   if (Typ->isDerivedType()) { | ||||
|     int ValSlot; | ||||
|     if (CompactionTable.empty()) | ||||
|       ValSlot = getSlot(Typ); | ||||
|     else | ||||
|       ValSlot = getGlobalSlot(Typ); | ||||
|     if (ValSlot == -1) {                // Have we already entered this type? | ||||
|       // Nope, this is the first we have seen the type, process it. | ||||
|       ValSlot = insertValue(Typ, true); | ||||
|       assert(ValSlot != -1 && "ProcessType returned -1 for a type?"); | ||||
|     } | ||||
|     Ty = (unsigned)ValSlot; | ||||
|   } else { | ||||
|     Ty = Typ->getPrimitiveID(); | ||||
|   } | ||||
|    | ||||
|   if (Table.size() <= Ty)    // Make sure we have the type plane allocated... | ||||
|     Table.resize(Ty+1, TypePlane()); | ||||
|  | ||||
|   // If this is the first value to get inserted into the type plane, make sure | ||||
|   // to insert the implicit null value... | ||||
|   if (Table[Ty].empty() &&  hasNullValue(Ty)) { | ||||
|     Value *ZeroInitializer = Constant::getNullValue(Typ); | ||||
|  | ||||
|     // If we are pushing zeroinit, it will be handled below. | ||||
|     if (D != ZeroInitializer) { | ||||
|       Table[Ty].push_back(ZeroInitializer); | ||||
|       NodeMap[ZeroInitializer] = 0; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // Insert node into table and NodeMap... | ||||
|   unsigned DestSlot = NodeMap[D] = Table[Ty].size(); | ||||
|   Table[Ty].push_back(D); | ||||
|  | ||||
|   SC_DEBUG("  Inserting value [" << Ty << "] = " << D << " slot=" <<  | ||||
| 	   DestSlot << " ["); | ||||
|   // G = Global, C = Constant, T = Type, F = Function, o = other | ||||
|   SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" :  | ||||
|            (isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o"))))); | ||||
|   SC_DEBUG("]\n"); | ||||
|   return (int)DestSlot; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user