For PR950:

The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31931 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer
2006-11-27 01:05:10 +00:00
parent 5fed9b9044
commit 3da59db637
105 changed files with 6737 additions and 3700 deletions

View File

@ -461,24 +461,23 @@ void BytecodeReader::insertArguments(Function* F) {
insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
}
// Convert previous opcode values into the current value and/or construct
// the instruction. This function handles all *abnormal* cases for instruction
// generation based on obsolete opcode values. The normal cases are handled
// in ParseInstruction below. Generally this function just produces a new
// Opcode value (first argument). In a few cases (VAArg, VANext) the upgrade
// path requies that the instruction (sequence) be generated differently from
// the normal case in order to preserve the original semantics. In these
// cases the result of the function will be a non-zero Instruction pointer. In
// all other cases, zero will be returned indicating that the *normal*
// instruction generation should be used, but with the new Opcode value.
//
/// Convert previous opcode values into the current value and/or construct
/// the instruction. This function handles all *abnormal* cases for instruction
/// generation based on obsolete opcode values. The normal cases are handled
/// in ParseInstruction below. Generally this function just produces a new
/// Opcode value (first argument). In a few cases (VAArg, VANext) the upgrade
/// path requies that the instruction (sequence) be generated differently from
/// the normal case in order to preserve the original semantics. In these
/// cases the result of the function will be a non-zero Instruction pointer. In
/// all other cases, zero will be returned indicating that the *normal*
/// instruction generation should be used, but with the new Opcode value.
Instruction*
BytecodeReader::upgradeInstrOpcodes(
unsigned &Opcode, ///< The old opcode, possibly updated by this function
std::vector<unsigned> &Oprnds, ///< The operands to the instruction
unsigned &iType, ///< The type code from the bytecode file
const Type* InstTy, ///< The type of the instruction
BasicBlock* BB ///< The basic block to insert into, if we need to
const Type *InstTy, ///< The type of the instruction
BasicBlock *BB ///< The basic block to insert into, if we need to
) {
// First, short circuit this if no conversion is required. When signless
@ -632,8 +631,27 @@ BytecodeReader::upgradeInstrOpcodes(
Opcode = Instruction::PHI;
break;
case 28: // Cast
Opcode = Instruction::Cast;
{
Value *Source = getValue(iType, Oprnds[0]);
const Type *DestTy = getType(Oprnds[1]);
// The previous definition of cast to bool was a compare against zero.
// We have to retain that semantic so we do it here.
if (DestTy == Type::BoolTy) { // if its a cast to bool
Opcode = Instruction::SetNE;
Result = new SetCondInst(Instruction::SetNE, Source,
Constant::getNullValue(Source->getType()));
} else if (Source->getType()->isFloatingPoint() &&
isa<PointerType>(DestTy)) {
// Upgrade what is now an illegal cast (fp -> ptr) into two casts,
// fp -> ui, and ui -> ptr
CastInst *CI = new FPToUIInst(Source, Type::ULongTy);
BB->getInstList().push_back(CI);
Result = new IntToPtrInst(CI, DestTy);
} else {
Result = CastInst::createInferredCast(Source, DestTy);
}
break;
}
case 29: // Call
Opcode = Instruction::Call;
break;
@ -720,8 +738,66 @@ BytecodeReader::upgradeInstrOpcodes(
case 40: // ShuffleVector
Opcode = Instruction::ShuffleVector;
break;
case 56: // Invoke with encoded CC
case 57: // Invoke Fast CC
case 56: // Invoke with encoded CC
case 57: { // Invoke Fast CC
if (Oprnds.size() < 3)
error("Invalid invoke instruction!");
Value *F = getValue(iType, Oprnds[0]);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0)
error("Invoke to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0)
error("Invoke to non function pointer value!");
std::vector<Value *> Params;
BasicBlock *Normal, *Except;
unsigned CallingConv = CallingConv::C;
if (Opcode == 57)
CallingConv = CallingConv::Fast;
else if (Opcode == 56) {
CallingConv = Oprnds.back();
Oprnds.pop_back();
}
Opcode = Instruction::Invoke;
if (!FTy->isVarArg()) {
Normal = getBasicBlock(Oprnds[1]);
Except = getBasicBlock(Oprnds[2]);
FunctionType::param_iterator It = FTy->param_begin();
for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
if (It == FTy->param_end())
error("Invalid invoke instruction!");
Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
}
if (It != FTy->param_end())
error("Invalid invoke instruction!");
} else {
Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
Normal = getBasicBlock(Oprnds[0]);
Except = getBasicBlock(Oprnds[1]);
unsigned FirstVariableArgument = FTy->getNumParams()+2;
for (unsigned i = 2; i != FirstVariableArgument; ++i)
Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
Oprnds[i]));
// Must be type/value pairs. If not, error out.
if (Oprnds.size()-FirstVariableArgument & 1)
error("Invalid invoke instruction!");
for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
}
Result = new InvokeInst(F, Normal, Except, Params);
if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
break;
}
case 58: // Call with extra operand for calling conv
case 59: // tail call, Fast CC
case 60: // normal call, Fast CC
@ -889,12 +965,78 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Result = new ShuffleVectorInst(V1, V2, V3);
break;
}
case Instruction::Cast:
case Instruction::Trunc:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new TruncInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::ZExt:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new ZExtInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::SExt:
if (Oprnds.size() != 2)
error("Invalid Cast instruction!");
Result = new CastInst(getValue(iType, Oprnds[0]),
Result = new SExtInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::FPTrunc:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new FPTruncInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::FPExt:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new FPExtInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::UIToFP:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new UIToFPInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::SIToFP:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new SIToFPInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::FPToUI:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new FPToUIInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::FPToSI:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new FPToSIInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::IntToPtr:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new IntToPtrInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::PtrToInt:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new PtrToIntInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::BitCast:
if (Oprnds.size() != 2)
error("Invalid cast instruction!");
Result = new BitCastInst(getValue(iType, Oprnds[0]),
getType(Oprnds[1]));
break;
case Instruction::Select:
if (Oprnds.size() != 3)
error("Invalid Select instruction!");
@ -914,7 +1056,6 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Result = PN;
break;
}
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
@ -960,7 +1101,6 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
case Instruction::Call: { // Normal Call, C Calling Convention
if (Oprnds.size() == 0)
error("Invalid call instruction encountered!");
Value *F = getValue(iType, Oprnds[0]);
unsigned CallingConv = CallingConv::C;
@ -1021,8 +1161,6 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
break;
}
case 56: // Invoke with encoded CC
case 57: // Invoke Fast CC
case Instruction::Invoke: { // Invoke C CC
if (Oprnds.size() < 3)
error("Invalid invoke instruction!");
@ -1038,14 +1176,8 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
std::vector<Value *> Params;
BasicBlock *Normal, *Except;
unsigned CallingConv = CallingConv::C;
if (Opcode == 57)
CallingConv = CallingConv::Fast;
else if (Opcode == 56) {
CallingConv = Oprnds.back();
Oprnds.pop_back();
}
unsigned CallingConv = Oprnds.back();
Oprnds.pop_back();
if (!FTy->isVarArg()) {
Normal = getBasicBlock(Oprnds[1]);
@ -1486,12 +1618,12 @@ void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
// We can't use that function because of that functions argument requirements.
// This function only deals with the subset of opcodes that are applicable to
// constant expressions and is therefore simpler than upgradeInstrOpcodes.
inline unsigned BytecodeReader::upgradeCEOpcodes(
unsigned Opcode, const std::vector<Constant*> &ArgVec
inline Constant *BytecodeReader::upgradeCEOpcodes(
unsigned &Opcode, const std::vector<Constant*> &ArgVec, unsigned TypeID
) {
// Determine if no upgrade necessary
if (!hasSignlessDivRem && !hasSignlessShrCastSetcc)
return Opcode;
return 0;
// If this is bytecode version 6, that only had signed Rem and Div
// instructions, then we must compensate for those two instructions only.
@ -1587,9 +1719,25 @@ inline unsigned BytecodeReader::upgradeCEOpcodes(
case 26: // GetElementPtr
Opcode = Instruction::GetElementPtr;
break;
case 28: // Cast
Opcode = Instruction::Cast;
case 28: { // Cast
const Type *Ty = getType(TypeID);
if (Ty == Type::BoolTy) {
// The previous definition of cast to bool was a compare against zero.
// We have to retain that semantic so we do it here.
Opcode = Instruction::SetEQ;
return ConstantExpr::get(Instruction::SetEQ, ArgVec[0],
Constant::getNullValue(ArgVec[0]->getType()));
} else if (ArgVec[0]->getType()->isFloatingPoint() &&
isa<PointerType>(Ty)) {
// Upgrade what is now an illegal cast (fp -> ptr) into two casts,
// fp -> ui, and ui -> ptr
Constant *CE = ConstantExpr::getFPToUI(ArgVec[0], Type::ULongTy);
return ConstantExpr::getIntToPtr(CE, Ty);
} else {
Opcode = CastInst::getCastOpcode(ArgVec[0], Ty);
}
break;
}
case 30: // Shl
Opcode = Instruction::Shl;
break;
@ -1612,7 +1760,7 @@ inline unsigned BytecodeReader::upgradeCEOpcodes(
Opcode = Instruction::ShuffleVector;
break;
}
return Opcode;
return 0;
}
/// Parse a single constant value
@ -1663,19 +1811,22 @@ Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
}
// Handle backwards compatibility for the opcode numbers
Opcode = upgradeCEOpcodes(Opcode, ArgVec);
if (Constant *C = upgradeCEOpcodes(Opcode, ArgVec, TypeID)) {
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, C);
return C;
}
// Construct a ConstantExpr of the appropriate kind
if (isExprNumArgs == 1) { // All one-operand expressions
if (Opcode != Instruction::Cast)
if (!Instruction::isCast(Opcode))
error("Only cast instruction has one argument for ConstantExpr");
Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
Constant *Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
return Result;
} else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
Constant *Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
return Result;
} else if (Opcode == Instruction::Select) {