diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp index f143e6d0ade..d07a3c9e7f3 100644 --- a/lib/Support/APFloat.cpp +++ b/lib/Support/APFloat.cpp @@ -1775,7 +1775,7 @@ APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) { // If the exponent is large enough, we know that this value is already // integral, and the arithmetic below would potentially cause it to saturate // to +/-Inf. Bail out early instead. - if (exponent+1 >= (int)semanticsPrecision(*semantics)) + if (category == fcNormal && exponent+1 >= (int)semanticsPrecision(*semantics)) return opOK; // The algorithm here is quite simple: we add 2^(p-1), where p is the diff --git a/unittests/ADT/APFloatTest.cpp b/unittests/ADT/APFloatTest.cpp index 00b62feaeb1..c8d7177d866 100644 --- a/unittests/ADT/APFloatTest.cpp +++ b/unittests/ADT/APFloatTest.cpp @@ -689,6 +689,23 @@ TEST(APFloatTest, roundToIntegral) { P = R; P.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(R.convertToDouble(), P.convertToDouble()); + + P = APFloat::getZero(APFloat::IEEEdouble); + P.roundToIntegral(APFloat::rmTowardZero); + EXPECT_EQ(0.0, P.convertToDouble()); + P = APFloat::getZero(APFloat::IEEEdouble, true); + P.roundToIntegral(APFloat::rmTowardZero); + EXPECT_EQ(-0.0, P.convertToDouble()); + P = APFloat::getNaN(APFloat::IEEEdouble); + P.roundToIntegral(APFloat::rmTowardZero); + EXPECT_TRUE(IsNAN(P.convertToDouble())); + P = APFloat::getInf(APFloat::IEEEdouble); + P.roundToIntegral(APFloat::rmTowardZero); + EXPECT_TRUE(IsInf(P.convertToDouble()) && P.convertToDouble() > 0.0); + P = APFloat::getInf(APFloat::IEEEdouble, true); + P.roundToIntegral(APFloat::rmTowardZero); + EXPECT_TRUE(IsInf(P.convertToDouble()) && P.convertToDouble() < 0.0); + } TEST(APFloatTest, getLargest) {