InstCombine: Refactor fmul/fdiv combines to handle vectors.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199598 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2014-01-19 13:36:27 +00:00
parent 6a9e4a8254
commit 3f6a9d705a
4 changed files with 118 additions and 65 deletions

View File

@ -116,7 +116,7 @@ public:
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);

View File

@ -313,16 +313,41 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
return;
ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
if (CFP && CFP->isExactlyValue(0.5)) {
if (match(I->getOperand(0), m_SpecificFP(0.5)))
Y = I->getOperand(1);
return;
}
CFP = dyn_cast<ConstantFP>(I->getOperand(1));
if (CFP && CFP->isExactlyValue(0.5))
else if (match(I->getOperand(1), m_SpecificFP(0.5)))
Y = I->getOperand(0);
}
static bool isFiniteNonZeroFp(Constant *C) {
if (C->getType()->isVectorTy()) {
for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
++I) {
ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
return false;
}
return true;
}
return isa<ConstantFP>(C) &&
cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
}
static bool isNormalFp(Constant *C) {
if (C->getType()->isVectorTy()) {
for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
++I) {
ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
if (!CFP || !CFP->getValueAPF().isNormal())
return false;
}
return true;
}
return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
}
/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
/// true iff the given value is FMul or FDiv with one and only one operand
/// being a normal constant (i.e. not Zero/NaN/Infinity).
@ -332,19 +357,13 @@ static bool isFMulOrFDivWithConstant(Value *V) {
I->getOpcode() != Instruction::FDiv))
return false;
ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
if (C0 && C1)
return false;
return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
(C1 && C1->getValueAPF().isFiniteNonZero());
}
static bool isNormalFp(const ConstantFP *C) {
const APFloat &Flt = C->getValueAPF();
return Flt.isNormal();
return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
}
/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
@ -354,41 +373,41 @@ static bool isNormalFp(const ConstantFP *C) {
/// resulting expression. Note that this function could return NULL in
/// case the constants cannot be folded into a normal floating-point.
///
Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
Instruction *InsertBefore) {
assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
Value *Opnd0 = FMulOrDiv->getOperand(0);
Value *Opnd1 = FMulOrDiv->getOperand(1);
ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
Constant *C0 = dyn_cast<Constant>(Opnd0);
Constant *C1 = dyn_cast<Constant>(Opnd1);
BinaryOperator *R = 0;
// (X * C0) * C => X * (C0*C)
if (FMulOrDiv->getOpcode() == Instruction::FMul) {
Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
if (isNormalFp(cast<ConstantFP>(F)))
if (isNormalFp(F))
R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
} else {
if (C0) {
// (C0 / X) * C => (C0 * C) / X
if (FMulOrDiv->hasOneUse()) {
// It would otherwise introduce another div.
ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
Constant *F = ConstantExpr::getFMul(C0, C);
if (isNormalFp(F))
R = BinaryOperator::CreateFDiv(F, Opnd1);
}
} else {
// (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
Constant *F = ConstantExpr::getFDiv(C, C1);
if (isNormalFp(F)) {
R = BinaryOperator::CreateFMul(Opnd0, F);
} else {
// (X / C1) * C => X / (C1/C)
Constant *F = ConstantExpr::getFDiv(C1, C);
if (isNormalFp(cast<ConstantFP>(F)))
if (isNormalFp(F))
R = BinaryOperator::CreateFDiv(Opnd0, F);
}
}
@ -433,17 +452,15 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
return RI;
}
ConstantFP *C = dyn_cast<ConstantFP>(Op1);
if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
Constant *C = cast<Constant>(Op1);
if (AllowReassociate && isFiniteNonZeroFp(C)) {
// Let MDC denote an expression in one of these forms:
// X * C, C/X, X/C, where C is a constant.
//
// Try to simplify "MDC * Constant"
if (isFMulOrFDivWithConstant(Op0)) {
Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
if (V)
if (isFMulOrFDivWithConstant(Op0))
if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
return ReplaceInstUsesWith(I, V);
}
// (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
Instruction *FAddSub = dyn_cast<Instruction>(Op0);
@ -452,8 +469,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
FAddSub->getOpcode() == Instruction::FSub)) {
Value *Opnd0 = FAddSub->getOperand(0);
Value *Opnd1 = FAddSub->getOperand(1);
ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
Constant *C0 = dyn_cast<Constant>(Opnd0);
Constant *C1 = dyn_cast<Constant>(Opnd1);
bool Swap = false;
if (C0) {
std::swap(C0, C1);
@ -461,10 +478,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Swap = true;
}
if (C1 && C1->getValueAPF().isFiniteNonZero() &&
isFMulOrFDivWithConstant(Opnd0)) {
if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
Value *M1 = ConstantExpr::getFMul(C1, C);
Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
Value *M0 = isNormalFp(cast<Constant>(M1)) ?
foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
0;
if (M0 && M1) {
@ -575,7 +591,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (!match(RHS, m_UIToFP(m_Value(C))))
std::swap(LHS, RHS);
if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
if (match(RHS, m_UIToFP(m_Value(C))) &&
C->getType()->getScalarType()->isIntegerTy(1)) {
B = LHS;
Value *Zero = ConstantFP::getNegativeZero(B->getType());
return SelectInst::Create(C, B, Zero);
@ -590,7 +607,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
std::swap(LHS, RHS);
if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
C->getType()->isIntegerTy(1)) {
C->getType()->getScalarType()->isIntegerTy(1)) {
A = LHS;
Value *Zero = ConstantFP::getNegativeZero(A->getType());
return SelectInst::Create(C, Zero, A);
@ -976,9 +993,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
/// returned; otherwise, NULL is returned.
///
static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
ConstantFP *Divisor,
Constant *Divisor,
bool AllowReciprocal) {
const APFloat &FpVal = Divisor->getValueAPF();
if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
return 0;
const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
APFloat Reciprocal(FpVal.getSemantics());
bool Cvt = FpVal.getExactInverse(&Reciprocal);
@ -1010,32 +1030,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
bool AllowReassociate = I.hasUnsafeAlgebra();
bool AllowReciprocal = I.hasAllowReciprocal();
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (AllowReassociate) {
ConstantFP *C1 = 0;
ConstantFP *C2 = Op1C;
Constant *C1 = 0;
Constant *C2 = Op1C;
Value *X;
Instruction *Res = 0;
if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
// (X*C1)/C2 => X * (C1/C2)
//
Constant *C = ConstantExpr::getFDiv(C1, C2);
const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
if (F.isNormal())
if (isNormalFp(C))
Res = BinaryOperator::CreateFMul(X, C);
} else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
} else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
//
Constant *C = ConstantExpr::getFMul(C1, C2);
const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
if (F.isNormal()) {
Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
AllowReciprocal);
if (isNormalFp(C)) {
Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
if (!Res)
Res = BinaryOperator::CreateFDiv(X, C);
}
@ -1056,33 +1073,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
return 0;
}
if (AllowReassociate && isa<ConstantFP>(Op0)) {
ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
if (AllowReassociate && isa<Constant>(Op0)) {
Constant *C1 = cast<Constant>(Op0), *C2;
Constant *Fold = 0;
Value *X;
bool CreateDiv = true;
// C1 / (X*C2) => (C1/C2) / X
if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
Fold = ConstantExpr::getFDiv(C1, C2);
else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
// C1 / (X/C2) => (C1*C2) / X
Fold = ConstantExpr::getFMul(C1, C2);
} else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
} else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
// C1 / (C2/X) => (C1/C2) * X
Fold = ConstantExpr::getFDiv(C1, C2);
CreateDiv = false;
}
if (Fold) {
const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
if (FoldC.isNormal()) {
Instruction *R = CreateDiv ?
BinaryOperator::CreateFDiv(Fold, X) :
BinaryOperator::CreateFMul(X, Fold);
R->setFastMathFlags(I.getFastMathFlags());
return R;
}
if (Fold && isNormalFp(Fold)) {
Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
: BinaryOperator::CreateFMul(X, Fold);
R->setFastMathFlags(I.getFastMathFlags());
return R;
}
return 0;
}
@ -1095,14 +1108,14 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
// (X/Y) / Z => X / (Y*Z)
//
if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
NewInst = Builder->CreateFMul(Y, Op1);
SimpR = BinaryOperator::CreateFDiv(X, NewInst);
}
} else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
// Z / (X/Y) => Z*Y / X
//
if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
NewInst = Builder->CreateFMul(Op0, Y);
SimpR = BinaryOperator::CreateFDiv(NewInst, X);
}

View File

@ -77,3 +77,26 @@ define float @test7(float %A, float %B, i32 %C) {
; CHECK: uitofp
}
define <4 x float> @test8(<4 x float> %A, <4 x float> %B, <4 x i1> %C) {
;; B*(uitofp i1 C) + A*(1 - uitofp i1 C) -> select C, A, B
%cf = uitofp <4 x i1> %C to <4 x float>
%mc = fsub fast <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>, %cf
%p1 = fmul fast <4 x float> %A, %mc
%p2 = fmul fast <4 x float> %B, %cf
%s1 = fadd fast <4 x float> %p2, %p1
ret <4 x float> %s1
; CHECK-LABEL: @test8(
; CHECK: select <4 x i1> %C, <4 x float> %B, <4 x float> %A
}
define <4 x float> @test9(<4 x float> %A, <4 x float> %B, <4 x i1> %C) {
;; A*(1 - uitofp i1 C) + B*(uitofp i1 C) -> select C, A, B
%cf = uitofp <4 x i1> %C to <4 x float>
%mc = fsub fast <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>, %cf
%p1 = fmul fast <4 x float> %A, %mc
%p2 = fmul fast <4 x float> %B, %cf
%s1 = fadd fast <4 x float> %p1, %p2
ret <4 x float> %s1
; CHECK-LABEL: @test9
; CHECK: select <4 x i1> %C, <4 x float> %B, <4 x float> %A
}

View File

@ -259,6 +259,14 @@ define float @fmul3(float %f1, float %f2) {
; CHECK: fmul fast float %f1, 3.000000e+00
}
define <4 x float> @fmul3_vec(<4 x float> %f1, <4 x float> %f2) {
%t1 = fdiv <4 x float> %f1, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3>
%t3 = fmul fast <4 x float> %t1, <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3>
ret <4 x float> %t3
; CHECK-LABEL: @fmul3_vec(
; CHECK: fmul fast <4 x float> %f1, <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00>
}
; Rule "X/C1 * C2 => X * (C2/C1) is not applicable if C2/C1 is either a special
; value of a denormal. The 0x3810000000000000 here take value FLT_MIN
;
@ -345,6 +353,15 @@ define float @fdiv2(float %x) {
; CHECK: fmul fast float %x, 0x3FE0B21660000000
}
define <2 x float> @fdiv2_vec(<2 x float> %x) {
%mul = fmul <2 x float> %x, <float 6.0, float 9.0>
%div1 = fdiv fast <2 x float> %mul, <float 2.0, float 3.0>
ret <2 x float> %div1
; CHECK-LABEL: @fdiv2_vec(
; CHECK: fmul fast <2 x float> %x, <float 3.000000e+00, float 3.000000e+00>
}
; "X/C1 / C2 => X * (1/(C2*C1))" is disabled (for now) is C2/C1 is a denormal
;
define float @fdiv3(float %x) {